Bolim

Canvas

9.1 Canvas Nedir?

Canvas, lizerine sekiller ¢izilebilen bir pencere aracidir (widget). Dikdorgen
bicemindedir. Canvas {izerine gekil gizilebildigi gibi, grafik, text, widget ve
frame konabilir.

Canvas yaratmak i¢in, se¢imlik parametrelerle Canvas () kurucu me-
totlar: kullanmilabilir.

Canvas iizerinde gekil ¢imek icin Tablo 9.1 ’de verilen metotlar kulla-
nilir.

Tablo 9.1: Canvas Uzerinde Is Yapan Metotlar

.create_arc() Yay parcas: (arc) gizer

.create_ bitmap() Bitmap resmi ¢izer
.create_image() Grafik ¢izer

.create_ line() Dogru pargasi ¢izer

.create oval() Oval gekiller ¢izer (elips, cember)

.create_polygon() | Cokgen ¢izer

create rectangle() | Dikdortgen ¢izer

.create_text) Canvas lizerine yaz yazar

.create window () Canvas iizerinde bir pencere yaratir.

62

BOLUM 9. CANVAS

Tablo 9.2: Canvas Segimlik Parametreleri

bd or borderwidth Width of the border around the outside of the canvas; see
Section 5.1, ?Dimensions?. The default is two pixels.
hg or background Ziélzgézngl color of the canvas. Default is a light gray, about
closeenough A float that specifies how close the mouse must be to an item
to be considered inside it. Default is 1.0.
If true (the default), the canvas cannot be scrolled outside
confine .
of the scrollregion (see below).
cursor Cursor used in the canvas. See Section 5.8, 7Cursors?.
. Size of the canvas in the Y dimension. See Section 5.1, 7Di-
height mensions?.

Lo Color of the focus highlight when the widget does not have
highlightbackground focus. See Section 53,g ?F‘icus: routing keygoard input?.
highlightcolor Color shown in the focus highlight.
highlightthickness Thickness of the focus highlight. The default value is 1.
celief The relief style of the canvas. Default is tk.FLLAT. See Section

5.6, TRelief styles?.
A tuple (w, n, e, s) that defines over how large an area the
scrollregion canvas can be scrolled, where w is the left side, n the top, e
the right side, and s the bottom.
selectbackground The background color to use displaying selected items.
selectborderwidth The width of the border to use around selected items.
selectforeground The foreground color to use displaying selected items.
Normally, focus (see Section 53, ?Focus: routing keyboard
input?) will cycle through this widget with the tab key only
takefocus if there are keyboard bindings set for it (see Section 54,
o ?Events? for an overview of keyboard bindings). If you set
this option to 1, focus will always visit this widget. Set it to
” to get the default behavior.
. Size of the canvas in the X dimension. See Section 5.1, 7Di-
width :
mensions?.
Normally, canvases can be scrolled horizontally to any posi-
tion. You can get this behavior by setting xscrollincrement
to zero. If you set this option to some positive dimension,
serollincrement the canvas can be positioned only on multiples of that dis-
tance, and the value will be used for scrolling by scrolling
units, such as when the user clicks on the arrows at the ends
of a scrollbar. For more information on scrolling units, see
Section 22, ?The Scrollbar widget?.
If the canvas is scrollable, set this option to the .set() method
xscrollcommand .
of the horizontal scrollbar.
yscrollincrement Works like xscrollincrement, but governs vertical movement.
yserollcommand If the canvas is scrollable, this option should be the .set()
method of the vertical scrollbar.

9.2. CANVAS KOORDINATLARI 63

9.2 Canvas Koordinatlar:

Canvas bir tagiyicidir. Canvas iizerindeki noktalar: ya ekranin koordinatlar:
cinsinden ya da canvas’in koordinatlarina cinsinden belirleyebiliriz. Ekran
i¢in oldugu gibi, Canvas’in koordit sisteminin baglangi¢ noktsi sol iist koge-
sidir.

9.3 Canvas’n Metotlar:

9.3.1 display list

Canvas tlizerinde, bg’den baglayarak fg'ya kadar olan biitiin widgetleri liste-
ler.

9.3.2 object ID

Canvas tizerinde konulan her nesneye bir numara (ID) verilir. Bu numara
sozkonusu nesnenin kurucusu tarafindan verilir.

9.3.3 Canvas tags

Canvas iizerinde konulan bir string’dir.

e (Canvas iizerinde birden ¢ok nesneye bir tek tag verilebilir.

e Bir nesnenin birden ¢ok tag’i olabilir.

Birden ¢ok nesneye bir tek tag vermenin yarari vardir. Ornegin, bir
haritada niifiisii belli bir sayidan biiyiik olan kentleri ber tag ile belirlersek,
harita iizerinde o kentleri gosteren ikonlar1 bir deyimle degigtirmek miimkiin
olur.

9.3.4 Canvas tagOrID

Canvas iizerine konulan bir nesne ID ile ya da tag ile belirlenebilir. tagOrld
metodu, nesneyi belirleyen ID var ise onu kullanir, nesneyi belirleyen tag
varsa onu kullanir.

64 BOLUM 9. CANVAS

9.4 Widget Metotlari

Canvas iizerine konulan widgetlere agagidaki metotlar uygulanabilir. Bunun
anlami gudur: Canvas iizerindeki her widget i¢inden bu metatlara erigilebi-
lir. Esanlamli olmak iizere, Canvas {izerine konulan her widget’in aduazay:
onlar1 kapsar.

.addtag above(newTag, tagOrId) Attaches a new tag to the object
just above the one specified by tagOrld in the display list. The newTag
argument is the tag you want to attach, as a string.

.addtag all(newTag) Attaches the given tag newTag to all the objects
on the canvas.

.addtag below(newTag, tagOrID) Attaches a new tag to the object
just below the one specified by tagOrld in the display list. The newTag
argument is a tag string.

.addtag closest(newTag, x, y, halo=None, start—=None) Adds a tag
to the object closest to screen coordinate (x,y). If there are two or
more objects at the same distance, the one higher in the display list
is selected.

Use the halo argument to increase the effective size of the point. For
example, a value of 5 would treat any object within 5 pixels of (x,y)
as overlapping.

If an object ID is passed in the start argument, this method tags the
highest qualifying object that is below start in the display list.

.addtag enclosed(newTag, x1, y1, x2, y2) Add tag newTag to all ob-
jects that occur completely within the rectangle whose top left corner
is (x1, y1) and whose bottom right corner is (x2, y2).

.addtag overlapping(newTag, x1, y1, x2, y2) Like the previous met-
hod, but affects all objects that share at least one point with the given
rectangle.

.addtag withtag(newTag, tagOrld) Adds tag newTag to the object or
objects specified by tagOrld.

.bbox(tagOrId=None) Returns a tuple (x1, y1, x2, y2) describing a rec-
tangle that encloses all the objects specified by tagOrld. If the ar-
gument is omitted, returns a rectangle enclosing all objects on the

9.4. WIDGET METOTLARI 65

canvas. The top left corner of the rectangle is (x1, y1) and the bot-
tom right corner is (x2, y2).

.canvasx(screenx, gridspacing—=None) Translates a window x coordi-
nate screenx to a canvas coordinate. If gridspacing is supplied, the
canvas coordinate is rounded to the nearest multiple of that value.

.canvasy(screeny, gridspacing=None) Translates a window y coordi-
nate screeny to a canvas coordinate. If gridspacing is supplied, the
canvas coordinate is rounded to the nearest multiple of that value.

.coords(tagOrld, x0, y0, x1, y1, ..., xn, yn) If you pass only the ta-
gOrld argument, returns a tuple of the coordinates of the lowest or
only object specified by that argument. The number of coordinates
depends on the type of object. In most cases it will be a 4-tuple (x1,
y1, x2, y2) describing the bounding box of the object.

You can move an object by passing in new coordinates.

.dchars(tagOrld, first=0, last=first) Deletes characters from a text item
or items. Characters between first and last inclusive are deleted, where
those values can be integer indices or the string ’end’ to mean the end
of the text. For example, for a canvas C and an item I, C.dchars(I, 1,
1) will remove the second character.

.delete(tagOrId) Deletes the object or objects selected by tagOrld. It is
not considered an error if no items match tagOrld.

.dtag(tagOrld, tagToDelete) Removes the tag specified by tagToDelete
from the object or objects specified by tagOrld.

find _above(tagOrld) Returns the ID number of the object just above
the object specified by tagOrld. If multiple objects match, you get the
highest one. Returns an empty tuple if you pass it the object ID of
the highest object.

find _all() Returns a list of the object ID numbers for all objects on the
canvas, from lowest to highest.

find below(tagOrld) Returns the object ID of the object just below
the one specified by tagOrld. If multiple objects match, you get the
lowest one. Returns an empty tuple if you pass it the object ID of the
lowest object.

66

BOLUM 9. CANVAS

find _closest(x, y, halo=None, start=None) Returns a singleton tuple

containing the object ID of the object closest to point (x, y). If there
are no qualifying objects, returns an empty tuple.

Use the halo argument to increase the effective size of the point. For
example, halo=5 would treat any object within 5 pixels of (x, y) as
overlapping.

If an object ID is passed as the start argument, this method returns
the highest qualifying object that is below start in the display list.

find _enclosed(x1, y1, x2, y2) Returns a list of the object IDs of all ob-

jects that occur completely within the rectangle whose top left corner
is (x1, y1) and bottom right corner is (x2, y2).

find _overlapping(x1, y1, x2, y2) Like the previous method, but re-

turns a list of the object IDs of all the objects that share at least one
point with the given rectangle.

find _withtag(tagOrld) Returns a list of the object IDs of the object or

objects specified by tagOrld.

focus(tagOrId=None) Moves the focus to the object specified by tagO-

rId. If there are multiple such objects, moves the focus to the first
one in the display list that allows an insertion cursor. If there are no
qualifying items, or the canvas does not have focus, focus does not
move.

If the argument is omitted, returns the ID of the object that has focus,
or 7 if none of them do.

.gettags(tagOrld) If tagOrld is an object ID, returns a list of all the tags

associated with that object. If the argument is a tag, returns all the
tags for the lowest object that has that tag.

Jdcursor(tagOrld, index) Assuming that the selected item allows text in-

sertion and has the focus, sets the insertion cursor to index, which may
be either an integer index or the string ’end’. Has no effect otherwise.

.index(tagOrld, specifier) Returns the integer index of the given spe-

cifier in the text item specified by tagOrld (the lowest one that, if
tagOrld specifies multiple objects). The return value is the correspon-
ding position as an integer, with the usual Python convention, where
0 is the position before the first character.

The specifier argument may be any of:

9.4. WIDGET METOTLARI 67

e tk.INSERT, to return the current position of the insertion cursor.

e tk.END, to return the position after the last character of the
item.

e tk.SEL FIRST, to return the position of the start of the current
text selection. Tkinter will raise a tk.TclError exception if the
text item does not currently contain the text selection.

e tk.SELL LAST, to return the position after the end of the current
text selection, or raise tk.TclError if the item does not currently
contain the selection.

e A string of the form 7@x,y?, to return the character of the cha-
racter containing canvas coordinates (x, y). If those coordinates
are above or to the left of the text item, the method returns 0; if
the coordinates are to the right of or below the item, the method
returns the index of the end of the item.

.insert(tagOrld, specifier, text) Inserts the given string into the object
or objects specified by tagOrld, at the position given by the specifier
argument.

The specifier values may be any of the keywords
tk.INSERT, tk.END, tk.SEL FIRST, or tk.SEL LAST.

Refer to the description of the index method above for the interpre-
tation of these codes.

The position of the desired insertion, using the normal Python con-
vention for positions in strings.

.itemcget(tagOrld, option) Returns the value of the given configuration
option in the selected object (or the lowest object if tagOrld specifies
more than one). This is similar to the .cget() method for Tkinter
objects.

.itemconfigure(tagOrld, option, ...) If no option arguments are supp-
lied, returns a dictionary whose keys are the options of the object
specified by tagOrld (the lowest one, if tagOrld specifies multiple ob-
jects).

To change the configuration option of the specified item, supply one
or more keyword arguments of the form option=value.

.move(tagOrId, xAmount, yAmount) Moves the items specified by ta-
gOrld by adding xAmount to their x coordinates and yAmount to
their y coordinates.

68

BOLUM 9. CANVAS

.postscript(option, ...) Generates an Encapsulated PostScript represen-

tation of the canvas’s current contents. The options include:

Tablo 9.3: Encapsulated PostScript Ureticiler

Use ’color’ for color output, ’gray’ for grayscale, or

colormode ‘mono’ for black and white.

If supplied, names a file where the PostScript will be
file written. If this option is not given, the PostScript
is returned as a string.

How much of the Y size of the canvas to print. De-

height . . .
18 fault is the entire visible height of the canvas.
If false, the page will be rendered in portrait orien-
rotate . . .
tation; if true, in landscape.
b Leftmost canvas coordinate of the area to print.
y Topmost canvas coordinate of the area to print.
width How much of the X size of the canvas to print. De-

fault is the visible width of the canvas.

.scale(tagOrld, xOffset, yOffset, xScale, yScale) Scale all objects ac-

cording to their distance from a point P=(xOffset, yOffset). The scale
factors xScale and yScale are based on a value of 1.0, which means no
scaling. Every point in the objects selected by tagOrld is moved so
that its x distance from P is multiplied by xScale and its y distance
is multiplied by yScale.

This method will not change the size of a text item, but may move it.

.scan__dragto(x, y, gain=10.0) See the .scan_mark() method below.

.scan__mark(x, y) This method is used to implement fast scrolling of a

canvas. The intent is that the user will press and hold a mouse button,
then move the mouse up to scan (scroll) the canvas horizontally and
vertically in that direction at a rate that depends on how far the
mouse has moved since the mouse button was depressed.

To implement this feature, bind the mouse’s button-down event to
a handler that calls scan mark(x, y) where x and y are the current
mouse coordinates. Bind the <Motion> event to a handler that, as-
suming the mouse button is still down, calls scan _dragto(x, y, gain)
where x and y are the current mouse coordinates.

9.4. WIDGET METOTLARI 69

The gain argument controls the rate of scanning. This argument has
a default value of 10.0. Use larger numbers for faster scanning.

.select _adjust(oid, specifier) Adjusts the boundaries of the current text
selection to include the position given by the specifier argument, in
the text item with the object ID oid.

The current selection anchor is also set to the specified position. For a
discussion of the selection anchor, see the canvas select from method
below.

For the values of specifier, see the canvas insert method above.

.select clear() Removes the current text selection, if it is set. If there is
no current selection, does nothing.

.select from(oid, specifier) This method sets the selection anchor to
the position given by the specifier argument, within the text item
whose object ID is given by oid.

The currently selected text on a given canvas is specified by three po-
sitions: the start position, the end position, and the selection anchor,
which may be anywhere within those two positions.

To change the position of the currently selected text, use this method
in combination with the select adjust, select from, and select to
canvas methods (q.v.).

.select _item() If there is a current text selection on this canvas, return
the object ID of the text item containing the selection. If there is no
current selection, this method returns None.

.select to(oid, specifier) This method changes the current text selec-
tion so that it includes the select anchor and the position given by
specifier within the text item whose object ID is given by oid. For the
values of specifier, see the canvas insert method above.

.tag_bind(tagOrld, sequence=None, function=None, add=None)
Binds events to objects on the canvas. For the object or objects selec-
ted by tagOrld, associates the handler function with the event sequ-
ence. If the add argument is a string starting with ’+’, the new binding
is added to existing bindings for the given sequence, otherwise the new
binding replaces that for the given sequence.

For general information on event bindings, see Section 54, 7Events?.

70

BOLUM 9. CANVAS

Note that the bindings are applied to items that have this tag at the
time of the tag bind method call. If tags are later removed from those
items, the bindings will persist on those items. If the tag you specify
is later applied to items that did not have that tag when you called
tag_bind, that binding will not be applied to the newly tagged items.

.tag_lower(tagOrld, belowThis) Moves the object or objects selected

by tagOrld within the display list to a position just below the first or
only object specied by the tag or ID belowThis.

If there are multiple items with tag tagOrld, their relative stacking
order is preserved.

This method does not affect canvas window items. To change a window
item’s stacking order, use a lower or lift method on the window.

.tag raise(tagOrld, aboveThis) Moves the object or objects selected

by tagOrld within the display list to a position just above the first or
only object specied by the tag or ID aboveThis.

If there are multiple items with tag tagOrld, their relative stacking
order is preserved.

This method does not affect canvas window items. To change a window
item’s stacking order, use a lower or lift method on the window.

.tag unbind(tagOrld, sequence, funcld=None) Removes bindings for

handler funcld and event sequence from the canvas object or objects
specified by tagOrld. See Section 54, 7Events?.

.type(tagOrld) Returns the type of the first or only object specified by

tagOrld. The return value will be one of the strings ’arc’, 'bitmap’,
image’, 'line’, "oval’, 'polygon’, 'rectangle’, 'text’, or 'window’.

xview(tk. MOVETO, fraction) This method scrolls the canvas relative

to its image, and is intended for binding to the command option of
a related scrollbar. The canvas is scrolled horizontally to a position
given by offset, where 0.0 moves the canvas to its leftmost position
and 1.0 to its rightmost position.

.xview(tk.SCROLL, n, what) This method moves the canvas left or

right: the what argument specifies how much to move and can be
either tk.UNITS or tk.PAGES, and n tells how many units to move
the canvas to the right relative to its image (or left, if negative).

The size of the move for tk.UNITS is given by the value of the canvas’s
xscrollincrement option; see Section 22, 7The Scrollbar widget?.

19

24

9.4. WIDGET METOTLARI 71

For movements by tk.PAGES, n is multiplied by nine-tenths of the
width of the canvas.

xview moveto(fraction) This method scrolls the canvas in the same
way as .xview(tk. MOVETO, fraction).

.xview scroll(n, what) Same as .xview(tk.SCROLL, n, what).

.yview(tk. MOVETO, fraction) The vertical scrolling equivalent of
| .xview(tk .MOVETO,?)

.yview(tk.SCROLL, n, what) The vertical scrolling equivalent of
| .xview(tk.SCROLL,?).

.yview moveto(fraction) The vertical scrolling equivalent of

| .xview ()

.yview scroll(n, what) The vertical scrolling equivalents of

| .xview(), .xview\ moveto(), and .xview\ _scroll().

Liste 9.1.

#!/usr/bin/python
—+— coding: utf—-8 —x—
nnn

ZetCode Tkinter tutorial

In this script, we draw basic
shapes on the canvas.

author: Jan Bodar

last modified: January 2011

website: www.zetcode .com
nnn

from Tkinter import Tk, Canvas, Frame, BOTH

class Example(Frame) :

def init (self, parent):
Frame. _init (self , parent)

self.parent — parent
self . initUI ()

def initUI(self):

29

34

39

44

49

54

72

self.parent.title (”"Shapes")
self .pack(fil1=BOTH, expand=1)

canvas = Canvas(self)
canvas.create oval(10, 10, 80, 80, outline—"red",
fill="green",
canvas.create oval (110, 10, 210, 80, outline="#f11",
fill="#1f1", width=2)

canvas.create
outline="#f11",

width=2)

rectangle (230,
fill="#1f1", width=2)

BOLUM 9. CANVAS

10, 290, 60,

canvas.create arc(30, 200, 90, 100, start=0,
outline—"#f11", fill="#1f1", width—2)

extent —210,

points — [150,
200,
canvas.create polygon (points,

3

fill="green

150, 150,

100, 200, 120,

100, 200]

width=2)

240, 180, 210,

outline="red’,

canvas.pack (fil11=BOTH, expand=1)

def main():

if

root = Tk()

ex = Example(root)
root .geometry ("330x220+300+300")
root .mainloop ()

__name_
main ()

3

~ main

7.

