13.2 SÜZGEÇLERİN KARŞILAŞTIRILMASI

13.2.1 Problemler

1. Sonlu bir küme üzerindeki bütün mümkün süzgeçleri bulunuz.

ÇÖZÜM: Örneğin $X = \{a, b, c, d, e\}$ olsun. Bu küme üzerinde

(a) $\mathcal{I}_1 = \{X\}$
(b) $\mathcal{I}_a = \{\{a\}, X\}$, $\mathcal{I}_b = \{\{b\}, X\}$, $\mathcal{I}_c = \{\{c\}, X\}$, $\mathcal{I}_d = \{\{d\}, X\}$, $\mathcal{I}_e = \{\{e\}, X\}$
(c) $\mathcal{I}_{ab} = \{\{a, b\}, X\}$, $\mathcal{I}_{ac} = \{\{a, c\}, X\}$, $\mathcal{I}_{ad} = \{\{a, d\}, X\}$, $\mathcal{I}_{ae} = \{\{a, e\}, X\}$, $\mathcal{I}_{bc} = \{\{b, c\}, X\}$, \ldots
(d) $\mathcal{I}_{abc} = \{\{a, b, c\}, X\}$, $\mathcal{I}_{acd} = \{\{a, c, d\}, X\}$, $\mathcal{I}_{ace} = \{\{a, c, e\}, X\}$, $\mathcal{I}_{bcd} = \{\{b, c, d\}, X\}$, $\mathcal{I}_{bce} = \{\{b, c, e\}, X\}$, \ldots
(e) $\mathcal{I}_{abcd} = \{\{a, b, c, d\}, X\}$, $\mathcal{I}_{abcde} = \{\{a, b, c, d, e\}, X\}$, $\mathcal{I}_{acde} = \{\{a, c, d, e\}, X\}$, \ldots

5 öğeli bir kümede yukarıdaki 31 farklı süzgeç tanımlanmış oldu.

2. Sonrusul bir X kümesi üzerindeki bir A süzgecinin bütün küme lerinin arası sisti boş ise, bunun X üzerindeki sonlu tümleyenler süzgeçinden daha ince olduğunu gösteriniz.

ÇÖZÜM: Sonlu tümleyenler süzgeçini \mathcal{I} ile gösterelim. $\mathcal{I} \subseteq A$ olduğunu göstermeliyiz. Olmayanaya Ergi Yöntemini kullanalım. Bir $S \in \mathcal{I}$ kümesinin A ya ait olmadığı varsayalım. Bu durumda S kümesi A ya ait hiç bir kümenin üst kümesi olamaz. Buradan her $A \in A$ için $A \cap S' \neq \emptyset$ olduğu sonucu çeker. Bu ise

$\emptyset \neq \bigcap_{A \in A} (A \cap S') \subseteq \bigcap_{A \in A} A = \emptyset$

olardu. Bu çelişki olamayacağına göre, kabulümüz yanlış; yani her $S \in \mathcal{I}$ kümesi \mathcal{A} süzgeceine aittir. Dolayısıyla, $\mathcal{I} \subseteq A$ olur.

3. \mathcal{I} ve \mathcal{H} bir X kümesi üzerinde iki süzgeç olsun. X üzerindeki süzgeçler arasında bu ikisinin bir en küçük üst sınır varsa, bunun $\mathcal{D} = \{S \cap H \mid S \in \mathcal{I}, H \in \mathcal{H}\}$ olduğunu gösteriniz.

ÇÖZÜM: Önerme 13.2.5 gereğince, söz konusu en küçük üst sınırın (sup) olması için gereki ve yeteri koşul her $S \in \mathcal{I}$ ve her $H \in \mathcal{H}$ için $S \cap H \neq \emptyset$ olmasdır. Bu koşul altında \mathcal{D} nin bir süzgeç olduğunu gösterebiliriz:

(a) $\emptyset \notin \mathcal{D}$dir.
13.2. SÜZGEÇLERİN KARŞILAŞTIRILMASI

(b) $S_1 \cap H_1 \in \mathcal{D}$ ve $S_2 \cap H_2 \in \mathcal{D}$ ise

$$(S_1 \cap H_1) \cap (S_2 \cap H_2) = (S_1 \cap S_2) \cap (H_1 \cap H_2) \in \mathcal{D}$$

dir.

(c) $S_1, S_2 \in \mathcal{J}$ ve $H_1, H_2 \in \mathcal{H}$ olmak üzere $S_1 \cap H_1 \subset S_2 \cap H_2$ ise $S_1 \subset S_2$ ve $H_1 \subset H_2$ olacakdan $S_2 \cap H_2 \in \mathcal{D}$ dur.

4. \mathcal{J}_∞ ailesi \mathbb{R} nin $(a, \infty), a \in \mathbb{R}$ şeklinde bir aralığın içeren bütün alt-kümlerinden oluşsun. Bu ailenin \mathbb{R} üzerinde bir süzgeç oluşturacağını gösteriniz.

ÇÖZÜM: Tanım 13.1.1 koşullarının sağlanmasını göstereceğiz.

(a) Her $S \in \mathcal{J}_\infty$ kümesi bir (a, ∞) aralığını içerdğinden hiç birisi boş olamaz.

(b) $A, B \in \mathcal{J}_\infty$ ise $(a, \infty) \subset A$ ve $(b, \infty) \subset B$ olacak biçimde a, b gerçek sayılar vardır. $c = \max\{a, b\} \in A \cap B$ olduğundan $A \cap B \in \mathcal{J}_\infty$ olacaktır.

(c) $S \in \mathcal{J}_\infty$ ve $S \subset A$ olsun. $(a, \infty) \subset S$ ise $(a, \infty) \subset A$ olmalıdır. Dolayısıyla $S \in \mathcal{J}_\infty$ olur.

5. \mathcal{F} ailesi X üzerinde bir süzgeç olsun ve bir $A \subset X$ alt-kümesi verilsin. \mathcal{F} nin A üzerindeki \mathcal{F}_A izinin (trace) bir süzgeç olması için gerekli ve yeterli koşul \mathcal{F} nin her kümesinin A ile kesişmesidir. Gösteriniz.

ÇÖZÜM:

$$\mathcal{F}_A = \{A \cap S \mid S \in \mathcal{F}\}$$
alesinin A üzerinde bir süzgeç olduğunu göstereceğiz.

(a) \mathcal{F} nin her kümesi A ile kesişirorsa $A \cap S \neq \emptyset$ olur. O halde $\emptyset \notin \mathcal{F}_A$ dir.

(b) $A \cap S_1 \in \mathcal{F}_A$ ve $A \cap S_2 \in \mathcal{F}_A$ ise

$$(A \cap S_1) \cap (A \cap S_2) = A \cap (S_1 \cap S_2) \in \mathcal{F}_A$$

olur.

(c) $(A \cap S_1) \subset (A \cap S_2)$ ise $S_1 \subset S_2$ olacakdan $S_2 \in \mathcal{F}_A$ dir. O halde $(A \cap S_2) \in \mathcal{F}_A$ dir.

6. \mathcal{F} ailesi X kümesi üzerinde bir aşık süzgeç (ultra filter) olsun. Eğer

$$A_1 \cup A_2 \cup \ldots \cup A_n \in \mathcal{F}$$

ise, $\{A_1, A_2, \ldots, A_n\}$ kümlerinden en az bir tanesi \mathcal{F} aşık süzgeceine aittir. Gösteriniz.

ÇÖZÜM:
Özel Durum: Önce problemi iki küme için çözelim. $A \cup B \in \mathcal{F}$ olduğuunda ya $A \in \mathcal{F}$ ya da $B \in \mathcal{F}$ olduğunu gösterelim.

Olmayana Ergi Yöntemini kullanalım. $A \notin \mathcal{F}$ ve $B \notin \mathcal{F}$ olduğunu varsayalım.

$$\mathcal{A} = \{ C \mid \varnothing \neq C \subseteq X, A \cup C \in \mathcal{F} \}$$
ailesini tanımlayalım. Bu ailenin X kümesi üzerinde bir süzgeç olduğu kolayca görülür. Ayrıca $\mathcal{F} \subseteq \mathcal{A}$ ve $B \in \mathcal{F}$ dir. Oysa \mathcal{F} aşırı (ultra) süzgeçtir. Öyleyse $\mathcal{F} = \mathcal{A}$ olmalıdır. O halde $B \in \mathcal{F}$ dir. Bu ise kabullüzmizin çelişliği yarat張貼 gösterir. Demek ki, $A \cup B \in \mathcal{F}$ olduğuunda ya $A \in \mathcal{F}$ ya da $B \in \mathcal{F}$ olmalıdır.

Genel Durum: $A_i \notin \mathcal{F}$ ise, Ön Problem 1(c) uyarınca, $A_i' \in \mathcal{F}$, $(n = 1, 2, \ldots, n)$ olacaktır. Bunların sonlu arakesiti de süzgece ait olmalıdır; yani

$$\bigcap_{i=1}^{n} A_i' = \left(\bigcup_{i=1}^{n} A_i \right)' \in \mathcal{F}$$

olacaktır. Oysa bu içerme olmaz; çünkü

$$\bigcup_{i=1}^{n} A_i \notin \mathcal{F}$$

icermesi vardır. O halde kabullümüz yanlıştır. En az bir $A_i \in \mathcal{F}$ olmalıdır.