Bölüm 5

KÜMELER CEBİRİ

Sayıdarda yaptığımız dört işlem, tek tek sayılarla ugraşır. İki sayılarda yapılan toplama, çıkarma, bölümü, çarpma, ... işlemlerle yeni sayılar oluşurur. Kümeler Cebiri, sayılardaki dört işlemden farklı olarak, iki kümeler arasında işlemlerle yeni kümeler oluşturulur. Bu kavram, birçok modellemede kullanılır.

5.1 TEMEL KAVRAMLAR

Kapsama

A kümesinin her öğesi B kümesinin de bir öğesi ise, "A kümesi, B kümesi tarafından kapsanır"’’ ya da "B kümesi A kümesini kapsıyor," denilir ve $A \subseteq B$ simgesiyle gösterilir:

$$A \subseteq B \Leftrightarrow (x \in A \Rightarrow x \in B) \quad (1)$$

$A \subseteq B$ ile $B \supseteq A$ eş anlamlı kullanılabılır.

Özel olarak, A kümesi, yalnızca bir tek a öğesi sahipse, bu kümeni {a} ile göstererek ve adına tek öğeli kümeye diyecesez. a bir öğedir, {a} ise bir kümedir. Dolayısıyla bu ikisi birbirlerinden farklıdır: $a \notin \{a\}$.

41
Alt Küme ve Üst Küme

A kümesi B kümesi tarafından kapsanyorsa "A kümesi B kümesinin bir alt kümesi dir," ya da "B kümesi A kümesi nin bir üst kümesi dir," diyeceğiz: \(B \supset A \).

Eşit Kümeler

A kümesi B kümesini kapsyor ve B kümesi de A kümesini kapsyorsa, bu iki küme birbirine eşittir, denilir ve bu durum, \(A = B \) simgesiyle gösterilir; yani,

\[
A = B \iff [(A \subset B) \land (B \subset A)]
\]

(2)

dir.

Has Alt Küme

A kümesi, B kümesi tarafından kapsanyorsa ve A ile B eşit değişseler, A kümesi B kümesi nin bir has alt kümesi'dir, diyecek ve

\[
(A \subset B) \land (A \neq B)
\]

(3)

biçiminde göstereceğiz.\(^1\)

Buradan anlaşıldığı gibi, \(A \) kümesi, \(B \) nin bir alt kümesidir, denildiğinde, bu, \(A \) kümesinin \(B \) ye eşit olamayacağı anlamına gelmez. Örneğin, her küme kendisi nin bir alt kümesidir \(A \subset A \). Neden?

Boş Küme

Hiçbir öğesi varolmayan kümeye, boş küme diyecek ve bunu \(\emptyset \) simgesiyle ya da içi \(\{ \} \) parantezi ile göstereceğiz.

Her küme boş kümeyi kapsar.

Kuvvet Kümesi

\(X \) boş olmayan bir küme olsun. \(X \) in bütün alt kümlerinden oluşan kümeye, \(X \) in kuvvet kümesi diyecek ve \(P(X) \) simgesiyle göstereceğiz.

Algilamayı kolaylaştırmak için, çoğunlukla, öğeleri kümler olan kümlere, kümler ailesi deriz.

Aşağıdaki önermenin ispatı illerde yapılabilecektir.

Önerme \(n \) öğeli bir kümenin bütün alt kümlerinin sayısı \(2^n \) dir.

\[^1\text{Uyarn:}\] Bazı kaynaklarda \(A \subset B \) yerine \(A \subseteq B \) simgesi ve \((A \subset B) \land (A \neq B) \) yerine de \(A \subseteq B \) simgesi kullanılır. Tabii, bir kavramın hangi simgesiyle gösterildiği, o kavrama etkiler; ama hangi kavram için hangi simgenin kullanılacağını daima bilmek ve tutarlı biçimde kullanmak gerekir. Biz, bu derste daima yukarıdaki tanımlarda geçen simgeleri kullanacağız.
5.2 KÜMELER ÜZERİNDE İŞLEMLER

Bileşim

Ya A kümésine ya B kümésine ya da hem A ya hem de B ye ait olan bütün öğelerden oluşan küme, **A ile B nin bileşimi**, denilir ve **A ∪ B** simgesiyle gösterilir; yani,

\[A ∪ B = \{ x \mid (x ∈ A) ∨ (x ∈ B) \} \]

(5.1)

dir.

Arakesit

Hem A kümésine hem de B kümésine ait olan bütün öğelerden oluşan kümeye, **A ile B nin arakesiti**, denilir ve **A ∩ B** simgesiyle gösterilir; yani,

\[A ∩ B = \{ x \mid x ∈ A ∧ x ∈ B \} \]

(5.2)

dir.

Ayrık Kümeler

A ile B kümelerinin arakesiti boş ise; yani,

\[A ∩ B = ∅ \]

(5.3)

ise, A kümesi ile B kümesi birbirlerinden ayrırlar (kesişmiyolar), denilir. Hiçbir ortak öğesi olmayan iki kümeye ayrıktır.

Kesişen Kümeler

A ile B kümelerinin arakesiti boş değilse ; yani,

\[A ∩ B \neq ∅ \]

(5.4)

ise, A ile B kümeleri **ayrık değildir (kesişmiyorlar)**, denilir. Kesişen iki kümenin en az bir tane ortak öğeleri vardır.

Fark

A kümesinin öğelerinden B kümésine ait olanları attıktan sonra, geriye kalan öğelerin oluşturduğu kümeye, **A ile B nin farkı** diyecek ve bunu **A \ B** ya da **A − B** simgesiyle göstereceğiz; yani,

\[A − B = A \setminus B = \{ x \mid x ∈ A ∧ x \notin B \} \]

(5.5)

dir.

\((A \setminus B) \neq (B \setminus A) \) olduğu apاقتktır.
Simetrik Fark

A ile B nin bileşim kümesinden, arakesitlerinin çıkarılmasıyla elde edilen kümeyle, A ile B kümeinin simetrik fark diyerek ve bunu $A \triangle B$ simgesiyle göstereceğiz; yani,

$$A \triangle B = \{(A \cup B) \setminus (A \cap B)\} \quad (5.6)$$

dir.

$$(A \triangle B) = (B \triangle A)$$

olduğu hemen görülür.

5.3 KÜMELER CEBİRİ

Bu bölümde bileşim, arakesit, fark, simetrik fark ve tümleme işlemleriyle ilgili başlıca özellikleri çıkaracağız.

Teorem 5.3.1.

a. Her küme boş kümeyi kapsar.

b. Her küme, o kümeyi belirleyen önermenin belirlediği evrensel küme tarafından kapsanır.

c. Bir küme ile onun tamlayan kümesinin bileşimi, evrensel kümelerine eşitir.

İşpat:

A $= \{x \mid p(x)\}$ herhangi bir küme ve

$$E = \{x \mid p(x) \vee p'(x)\}$$

A yi kapsayan evrensel küme olsun. (Evrensel küme tanımına bakınız.) Aşağıdaki bağıntıları göstermeliyz.

a. $\emptyset \subset A$

b. $A \subset E$

c. $E = A \cup A'$

a. **Olmayana Eşgi Yöntemini kullanalım.** Eğer $\neg(\emptyset \subset A)$ césdüy,

$$\neg(\emptyset \subset A) \iff [\exists x((x \in \emptyset) \land (x \notin A))] \equiv 0$$

$$\Rightarrow [\forall x(x \in \emptyset \Rightarrow x \in A) \equiv 1]$$

$$\Rightarrow [\emptyset \subset A] \equiv 1$$

oldu. Sağdaki ilk satırdaki, $[(x \in \emptyset) \equiv 0]$ olduğundan, $(x \in A)$ önermesi ister doğru, ister yanlış olursa, $(x \in \emptyset) \land (x \notin A)$ bileşik önermesi hep yanlıştır. Bu satırdaki ifadenin olumsuzu, ikinci satırdaki ifadeye eşittir ve hepdoğrudur. Üçüncü satıra geçmek için, alt küme tanıımı kullanmak yetecektir.
b. \[x \in A \Rightarrow p(x) \Rightarrow x \in E \]
yazabiliriz. Neden?

c. \[
\begin{align*}
x & \in E \iff [p(x) \lor p'(x)] \\
& \iff [(x \in A) \lor (x \in A')]
\end{align*}
\]
olduğundan,
\[E \subset (A \cup A') \quad \land \quad E \supset (A \cup A') \]
bağntılar vardır. Bu isteneni verir.

Buradan görüldüğü ve daha önce de sözledigimiz gibi, evrensel küme, ele aldığımız kümeyi belirleyen \(\Phi \) önermesine bağlı olarak değişmektedir. İşlemelerde kolyaylaşılmak için, ele alacağımız bütün kümeleri kapsayacak kadar büyük; ama yalnız cınları kapsayacak kadar küçük bir evrensel kümenin seçildiğini varsayacak.

Farklı evrensel kümelerin seçilmesi, kümelerle yapacağımız işlemlerin özelliklerini değiştirmeyecektir.

Bu göre, \(E \) evrensel kümnesinin belir bir \(p \) açık önermesini sağlayan öğelerinden oluşan \(A \) alt kümesi
\[
A = \{ x \mid x \in E \land p(x) \} = \{ x \mid \Phi(x) \land p(x) \} \quad (5.7)
\]
dir. Buradaki \(p \) önermesinin, genellikle, \(E \) yi belirleyen \(\Phi \) önermesinden farklı olabileceğiเนe dikkat edilmelidir. Zaten \(\Phi \) önermesiyle pek ilgilenmeyeceğiz. Ele alacağımız bütün kümeler \(E \) ye ait olacaktır, yukarıdaki ifadeyi daha kısa olarak,
\[
A = \{ x \mid p(x) \} \quad (5.8)
\]
büyükmine yazabiliriz.

Aşağıdaki teoremlerin ispatları, önermeler cebirinde yaptığımız ilgili bağntılardan çıkar.

Önerme 5.3-1. A ile B herhangi iki küme ise, aşağıdaki bağntılar sağlanır.

1. \[A = B \iff [(x \in A) \iff (x \in B)] \]
2. \[x \in A \iff x \notin A' \]
3. \[x \in A' \iff x \notin A \]
4. \[A \subset B \iff A \cup B = B \]
5. \[A \subset B \iff A \cap B = A \]
6. \[A \subset (A \cup B) \]
7. \[B \subset (A \cup B) \]
8. \[(A \cap B) \subset A \]
9. \[(A \cap B) \subset B \]
10. \[(A \cap A') = \emptyset \]
Önerme 5.3.2. A, B, C herhangi üç küme ise, aşağıdaki bağıntılara sahiptir.

a. \[A = A \]
b. \[A = B \Rightarrow B = A \]
c. \[(A \subset B) \land (B \subset C) \Rightarrow (A \subset C) \]
d. \[(A = B) \land (B = C) \Rightarrow (A = C) \]
e. \[A \setminus B \neq B \setminus A \]

Önerme 5.3.3. A, B ve C herhangi üç küme ise, aşağıdaki bağıntılar sağlanır.

1. \[A \cup \emptyset = A \] (Boş küme bileşim işleminin birimidir)
2. \[A \cap \emptyset = \emptyset \] (Boş küme, arakesit işleminin yok edicisidir)
3. \[A \cup A = A \] (Bileşimde Eşgüçlülük Kurallı)
4. \[A \cap A = A \] (Arakesitte Eşgüçlülük Kurallı)
5. \[A \cup B = B \cup A \] (Bileşim İşleminin Yer Değiştirebilirliği)
6. \[A \cap B = B \cap A \] (Arakesitin Yer Değiştirebilirliği)
7. \[(A \cup B) \cup C = A \cup (B \cup C) \] (Bileşimin Birleşebilirliği)
8. \[(A \cap B) \cap C = A \cap (B \cap C) \] (Arakesitin Birleşebilirliği)
9. \[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \] (Arakesit Üzerine Daşılma)
10. \[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \] (Bileşim Üzerine Daşılma)

Bu kümeler cebirinin kuralları dijital olarak ve sadece bir altyapı olarak obrakyanız.

1. Yol: Önermelere Cebir ile Kümeler Cebiri'nin bilinen özelliklerini kullanarak, istenen bağıntıyı çıkarabiliriz.

\[x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in B \cup C \]
\[\Leftrightarrow x \in A \land (x \in B \lor x \in C) \]
\[\Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C) \]
\[\Leftrightarrow (x \in A \cap B) \lor (x \in A \cap C) \]
\[\Leftrightarrow x \in (A \cap B) \cup (A \cap C) \]

2. Yol: Gösterilecek eşitliğin sol ve sağındaki önermelerin doğruluğunu tablolarını düzenleyip; doğruluğ dğerlerinin aynı olduğunu görebilibirliriz. Bunun için, her iki yandaki önermeleri yahut bileşenlerine ayırdı, her birisinin doğruluğunun d格尔lerini bir tabloda göstererekiz.

Eşitliğin sol ve sağındaki önermelere,
\[P(x) = x \in A \cap (B \cup C) \]
\[Q(x) = x \in (A \cap B) \cup (A \cap C) \]
diyelim. Bu iki önermenin mantıksal denk olduğunu göstermek için, Aşağıdaki tabloyu düzenleyelim.
5.3. KÜMELER CEBİRİ

\[x \in A \quad x \in B \quad x \in C \quad x \in A \cap B \quad x \in A \cap C \quad x \in B \cup C \quad P(x) \quad Q(x) \]

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Bu tablodan, evrensel kümeye ait her \(x \) için,

\[P(x) \equiv Q(x) \]

olduğu görülmektedir. O halde,

\[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]

 eşitliği çktı olur.

Önerme 5.3.4. E evrensel küme, A de B bunun birer alt kümesi ipler, aşağıdaki eşitlikler sağlanır.

1. \(A \cup E = E \quad E, \ Bileşimin \ Birim \ Öjesidir \)
2. \(A \cap E = A \quad E, \ Arakesitin \ Birim \ Öjesidir \)
3. \(A = E \setminus A' \)
4. \(A' = E \setminus A \)
5. \((A')' = A \)
6. \(E' = \emptyset \)
7. \(\emptyset' = E \)
8. \((A \cup B)' = A' \cap B' \quad De \ Morgan \ Kuralı \)
9. \((A \cap B)' = A' \cup B' \quad De \ Morgan \ Kuralı \)
10. \((A \subset B) \Rightarrow A' \supset B' \quad \)

İspat: Aşağıdaki gerektirmeler, Önermeler Cebirinde ve Kümeler Cebirinde gördüğümüz özelliklerdir. Her bir adına nedenleriyle açıklayınız.
1. $A \subseteq E \Rightarrow A \cup E = E$
2. $A \subseteq E \Rightarrow A \cap E = A$
3. $x \in A \Leftrightarrow x \notin A' \Leftrightarrow x \in E \setminus A'$
4. $x \in A' \Leftrightarrow x \notin A \Leftrightarrow x \in E \setminus A$
5. $x \in (A')' \Leftrightarrow x \notin A' \Leftrightarrow x \in A$
6. $x \in E' \Leftrightarrow x \notin E \Leftrightarrow \Omega(x) \Rightarrow x \in \emptyset$
7. $x \in \emptyset' \Leftrightarrow x \notin \emptyset \Leftrightarrow \Omega(x) \Leftrightarrow x \in E$
8. $x \in (A \cup B)' \Leftrightarrow x \notin A \cup B$
 $\Leftrightarrow (x \notin A) \land (x \notin B)$
 $\Leftrightarrow (x \in A') \land (x \in B')$
 $\Leftrightarrow x \in A' \cap B'$
9. $x \in (A \cap B)' \Leftrightarrow x \notin A \cap B$
 $\Leftrightarrow (x \notin A) \lor (x \notin B)$
 $\Leftrightarrow (x \in A') \lor (x \in B')$
 $\Leftrightarrow x \in A' \cup B'$

5.4 ALIŞTIRMALAR

 (a) $(A \setminus B)' = B \cup A'$
 (b) $A \setminus B = A \cap (E \setminus B)$
 (c) $(A \Delta B) \Delta C = A \Delta (B \Delta C)$
 (d) $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$

2. (a) $A \setminus B = A \Leftrightarrow (A \cap B = \emptyset) \Leftrightarrow B \setminus A = \emptyset \Leftrightarrow A \subseteq B \Leftrightarrow A \setminus B = \emptyset$
 (b) $A \setminus B = B \setminus A \Leftrightarrow A \Delta C = B \Leftrightarrow B \Delta C = A$
 (c) $(A \subset C \cap B \subset C) \Rightarrow A \cup B \subset C$
 (d) $(C \subset A \cap C \subset B) \Rightarrow C \subset (A \cap B)$
 (e) $A \subset B \Leftrightarrow B' \subset A'$
 (f) $A \cap B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A$

3. Aşağıdaki eşitlikleri gösteriniz.
 (a) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
 (b) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
 (c) $(A \setminus B) \cap C = (A \cap B) \setminus (A \cap C) = (A \setminus C) \cup B$
 (d) $A \Delta B = A' \Delta B' = A \cup B \cap (A' \cup B') = (B \setminus A) \cup (A \setminus B)$
 (e) $A \cup B = (A \Delta B) \Delta (A \cap B)$