Text Corrections

Page 33 The first answer to the exercise at the bottom of the page should be 9.20 kohms.

Page 46 The units on the vertical axis of Fig. 2.4 should be cm$^{-3}$.

Page 108 Exercise: 2.13 mA, 1.13 mA, -1.27 V

Page 117 Exercise: 0.912 ms, 19.7$^\circ$

Page 118 Exercise at bottom: 0.994 V, 1.07 V

Page 172 Units in the equation near the bottom of the page should be A/V2

Page 178 Third exercise (25.4 uA, 6.52 V)

Page 182 Exercise answer should be 83.2 uA

Page 186 Exercise (2.22 uA, 2.96 mV)

Page 192 Last exercise 127 GHz

Page 193 Near the end of the first sentence: 105 V/cm
Page 217 Last answer in exercise - 1.07 mA

Page 223 Exercise answers (b) 0.300 fA, 5.26 aA, -0.305 fA

Page 229 V_{CE} in second exercise should be 5.44 V

Page 237 The units on D_n in the exercise are cm2/s.

Page 240 First exercise - 1.24 uF

Page 250 Q-Point: (206 uA, 4.18 V)

Page 278 Fig. 6.3(a): Remove the labels and arrows indicating NM_L and NM_H.

Page 301 Exercise; $I_{DD} = 278$ uA

Page 306 In the figure, the voltages should be $V_{DSS} = 0.20$ V $V_{DSL} = 3.10$ V

Page 321 Spice Results Table: 11000 132 64.4 0 | 11111 64.6 31.9 31.9

Page 330 Exercise: 4.47 ns \rightarrow 4.97 ns, 3.84 ns \rightarrow 2.84 ns

Page 358 Exercise: 1.27 V

Page 362 $C = 0.75$ pF in the first exercise. $\tau_p = 2.4 \times (2pF/0.75pF) \times (2/1)/(8/1) = 1.6$ ns Also "delay of 1.6 ns" just above the equation. The delay in Fig. 7.13(b) is 1.6 ns.

Page 362 In the second exercise: $(W/L)_P = 78.8/1$ $(W/L)_N = 31.5$

Page 380 Exercise: $P = 12.5$ mW

Page 456 The frequency used in the simulations is 2000 Hz, not 1000 Hz.

Page 549 Example 11.2: The gain of E1 should be negative, -10^9

Page 573 Gain block E1 is not connected properly in Example 11.8. E1 should be flipped (mirrored) vertically, and the inverting input should be connected to the positive output.

Page 626 Example 12.6: Known information: $A = 80$ dB

Page 656 SPICE Results: $R_{in} = 28.9$ Tohms (10^{12})

Page 700 VAF should be 75 V in the SPICE simulation

Page 725 The SPICE value of the input resistance should be 14.8 kΩ, not 16.0 kΩ.
Example 13.10 - "with feedback bias" should be deleted

SPICE results: $V_{CE} - V_{BE} = 7.90$ V and BF = 116

SPICE Exercise Results: 64.164 uV, 0.520

Pages 1021 & 1030 Examples 16.6 and 16.7: $C_1 = C_2 = 3.9$ uF, $C_3 = 0.082$ uF

- Problem Statements

2.48 The second dimension in Fig. P2.48 should be 2 μm, not 3 μm

4.39 Page (c) should refer to Fig. P4.39(b).

4.134 $V_{DS} = -5$ V

7.91 Use $V_{DD} = 2.5$V

8.23 $C_{BL} = 500$ fF

11.10 & 11.18 V_S should be v_S

13.33 $R_S = 1$ kohms and $R_4 = 1$ kohms

14.1 In Fig. 14.1(m), the power supply should be positive: $+V_{DD}$.

14.14 $V_{CC} = 15$ V, $-V_{EE} = -15$ V

14.69 $C_3 = 2.2$ uF.

14.76 Ignore reference to C_3.

14.115 $C_3 = 2.2$ uF

14.122 $C_1 = C_2 = C_3 = 1$ uF.

15.96 Ignore the last sentence in the problem statement.

15.203 Problem should refer to Prob. 15.202.

16.65 Problem should refer to Prob. 16.14(e).
R_L is connected between the collectors of transistors Q_1 and Q_2.

The transistor parameters should be $K_p = 1.25 \text{ mA/V}^2$ and $V_{TN} = -4 \text{ V}$.

$R_S = 820 \Omega$, and the transistor parameters should be $K_p = 1.25 \text{ mA/V}^2$ and $V_{TN} = -4 \text{ V}$.