Combinatorics Formula Sheet

Factorial

factorial of a non-negative integer n :
special case :

$$
n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1
$$

$$
0!=1
$$

Combinations

n Different Objects Taken r Objects at a Time: $\quad{ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$

Permutations

n Different Objects :
n Different Objects Taken r Objects at a Time:
$n!$
(1) ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
(2) ${ }_{n} P_{r}=n(n-1)(n-2) \cdots(n-r+1)$
n Objects Not All Different (Distinguishable P's) : $\frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{k}!}$
n Different Objects arranged in a Circle :

$$
(n-1)!
$$

Binomial Expansion

1. The number of the terms in the expansion of $(a+b)^{n}$ is $n+1$.
2. The coefficient of the first term is 1 .
3. The coefficient of any other term is the product of the coefficient of the preceding term and the exponent of a in the preceding term divided by the number of the preceding term.
4. The exponent of a in any term after the first term is one less than the exponent of a in the preceding term. (The powers of a decrease from n to 0 .)
5. The exponent of b in any term after the first term is one greater than the exponent of b in the preceding term. (The powers of b increase from 0 to n.)
6. The sum of the exponents of a and b in each term is n.

Binomial Theorem

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\cdots+\binom{n}{n} b^{n}
$$

Alternate Form :

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r} \quad \text { where }\binom{n}{r}={ }_{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

k-th term Formula :
k-th term of $(a+b)^{n}$ is $\binom{n}{k-1} a^{n-(k-1)} b^{k-1}$

Row		Pascal's Triangle											
0							1						
1						1		1					
2					1		2		1				
3				1		3		3		1			
4			1		4		6		4		1		
5		1		5		10		10		5		1	
6			6		15		20		15		6		1
7	1	7		21		35		35		21		7	1
\vdots							\vdots						

The Inclusion-Exclusion Principle

For any two sets A and $B, \quad n(A \cup B)=n(A)+n(B)-n(A \cap B)$.

The Complement Principle

If set A is a subset of a universal set U, then $n(A)=n(U)-n\left(A^{C}\right)$.

