Factorial

factorial of a non-negative integer *n* : special case :

$$n! = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1$$

 $0! = 1$

Combinations

n Different Objects Taken *r* Objects at a Time : ${}_{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$

Permutations

n Different Objects :n!n Different Objects Taken r Objects at a Time :(1)
$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
(2) $_{n}P_{r} = n(n-1)(n-2)\cdots(n-r+1)$ n Objects Not All Different (Distinguishable P's) : $\frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{k}!}$ n Different Objects arranged in a Circle : $(n-1)!$

Binomial Expansion

- 1. The number of the terms in the expansion of $(a + b)^n$ is n + 1.
- 2. The coefficient of the first term is 1.
- 3. The coefficient of any other term is the product of the coefficient of the preceding term and the exponent of a in the preceding term divided by the number of the preceding term.
- 4. The exponent of a in any term after the first term is one less than the exponent of a in the preceding term. (The powers of a decrease from n to 0.)
- 5. The exponent of b in any term after the first term is one greater than the exponent of b in the preceding term. (The powers of b increase from 0 to n.)
- 6. The sum of the exponents of a and b in each term is n.

Binomial Theorem

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \binom{n}{3}a^{n-3}b^{3} + \dots + \binom{n}{n}b^{n}$$

Alternate Form :

$$(a+b)^n = \sum_{r=0}^n {n \choose r} a^{n-r} b^r$$
 where ${n \choose r} = {n \choose r} C_r = \frac{n!}{r! (n-r)!}$

k -th term Formula :

k-th term of
$$(a+b)^n$$
 is $\binom{n}{k-1}a^{n-(k-1)}b^{k-1}$

Row	Pascal's Triangle														
0								1							
1							1		1						
2						1		2		1					
3					1		3		3		1				
4				1		4		6		4		1			
5			1		5		10		10		5		1		
6		1		6		15		20		15		6		1	
7	1		7		21		35		35		21		7		1
÷								÷							

The Inclusion-Exclusion Principle

For any two sets A and B, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

The Complement Principle

If set A is a subset of a universal set U, then $n(A) = n(U) - n(A^{C})$.