
Subqueries
Chapter 6

Objectives

After completing this lesson, you should be able to do the
follovving:
•Describe the types of problems that
subqueries can solve
•Define subqueries
•List the types of subqueries
•Write single-row and multiple-row
subqueries

1

Using a Subquery to Solve a Problem

"Who has a salary greater than Jones'?"

"Which employees have a salary greater
than Jones' salary?"

"What is Jones' salary?"

2

Subqueries

SELECT select_list

FROM table

WHERE expr operator

(SELECT select_List

 FROM table);

•The subquery (inner query) executes
once before the main query.
•The result of the subquery is used by
the main query (outerquery).

A subquery is a SELECT statement that is embedded in a clause of another
SELECT statement. You can build powerful statements out of simple ones by
using subqueries. They can be very useful when you need to select rows from a
table with a condition that depends on the data in the table itself.

You can place the subquery in a number of SQL clauses

•WHERE clauss
•HAVING clause
•FROM clause
ln the syntax;

operator includes a comparison operatör such as >, =, or IN

Note: Comparison operutors fall iııto two classes: single-row operators

(> , = , >= , < , < > , <=)

 and multiple-row operators (IN , ANY , ALL).

3

Using a Subquery

SELECT ename
FROM EMP
WHERE sal >
 (SELECT sal
 FROM emp
 WHERE empno=7566);

ENAME
FORD
SCOTT
KING
FORD

4

Using a Subquery

SELECT ename, sal, deptno, job
FROM EMP
WHERE job =
 (SELECT job
 FROM emp
 WHERE empno=7369);

ENAME SAL DEPTNO JOB
ADAMS 1100 20 CLERK
JAMES 950 30 CLERK
MILLER 1300 10 CLERK
SMITH 800 20 CLERK
ADAMS 1100 20 CLERK
JAMES 950 30 CLERK
MILLER 1300 10 CLERK

7 rows selected.

5

SELECT ename, sal, deptno

 FROM EMP

 WHERE sal IN

 (SELECT MIN(sal)

 FROM emp

 GROUP BY deptno);

ENAME SAL DEPTNO
JAMES 950 30
SMITH 800 20
MILLER 1300 10

6

 SELECT empno, ename, job

 FROM emp

 WHERE sal < ANY

 (SELECT sal

 FROM emp

 WHERE job = 'CLERK');

EMPNO ENAME JOB
7369 SMITH CLERK
7900 JAMES CLERK
7876 ADAMS CLERK
7521 WARD SALESMAN
7654 MARTIN SALESMAN

7

 SELECT empno, ename, job
 FROM emp
 WHERE sal < ANY
 (SELECT sal
 FROM emp
 WHERE job = 'CLERK')
 AND job <> 'CLERK' ;

EMPNO ENAME JOB
7521 WARD SALESMAN
7654 MARTIN SALESMAN

8

 SELECT empno, ename, job
 FROM emp
 WHERE sal > ALL
 (SELECT sal
 FROM emp
 WHERE job = 'CLERK')
 AND job <> 'CLERK' ;

EMPNO ENAME JOB
7499 ALLEN SALESMAN
7566 JONES MANAGER
7698 BLAKE MANAGER
7782 CLARK MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7844 TURNER SALESMAN
7902 FORD ANALYST

8 rows selected.

9

SELECT empno, ename, job
 FROM emp
 WHERE sal > ALL
 (SELECT AVG(sal)
 FROM emp
 GROUP BY deptno) ;

EMPNO ENAME JOB
7566 JONES MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7902 FORD ANALYST

10

Guidelines for Using Subqueries

•Enclose subqueries in parentheses.
•Place subqueries on the right side of the
comparison operator.
•Do not add an ORDER BY clause to a
subquery.
•Use single-row operators with single-
row subqueries.
•Use multiple-row operators with
multiple-row subqueries.

11

Types of Subqueries

• Single-row subquery
• Multiple-row subquery
• Multiple-column subquery

Types of Subqueries

Single-row subgueries: Queries that return only one row from the inner
SELECT stntenıent

Muliple-row subqueries: QUERIES that return more than one rows from the
inner SELECT statement

Muliple-column subqueries: QUERIES that return more than one column from
the inner SELECT statement.

12

Single-Row Subqueries

•Return only one row
•Use single-row comparison operators

Operator Meaning

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<> , =! Not equal to

SELECT ename, job
FROM EMP
WHERE job =
 (SELECT job
 FROM emp
 WHERE empno=7369) ;

ENAME JOB
ADAMS CLERK
JAMES CLERK
MILLER CLERK
SMITH CLERK
ADAMS CLERK
JAMES CLERK
MILLER CLERK

7 rows selected.

13

Executing Single-Row Subqueries

14

Using Group Functions in a Subquery

SELECT ename, sal, deptno
FROM EMP
WHERE sal IN
 (SELECT MIN(sal)
 FROM emp
 GROUP BY deptno) ;

ENAME SAL DEPTNO
SMITH 800 20
JAMES 950 30
MILLER 1300 10

15

HAVING Clause with Subqueries

•The Oracle Server executes subqueries
first.
•The Oracle Server returns results into
the HAVING clause of the main query.

SELECT job, AVG(sal)
 FROM emp
 GROUP BY job
 HAVING AVG(sal) =
 (SELECT MIN(AVG(sal))
 FROM emp
 GROUP BY job);

JOB AVG(SAL)
CLERK 1037,5

16

What Is Wrong With This Statement?

SELECT empno, ename
 FROM emp
 WHERE sal =
 (SELECT MIN(sal)
 FROM emp
 GROUP BY deptno);

 (SELECT MIN(sal)
 *

ERROR at line 4:
ORA-01427: single-row subquery returns more than one row

17

Will This Statement Work?

SELECT ename, job
 FROM emp
 WHERE job =
 (SELECT job
 FROM emp
 WHERE ename = 'SMYTHE') ;

no rows selected

18

Multiple-Row Subqueries

• Return more than one row
• Use multiple-row comparison operators

Operator Meaning
IN Equal to any member in the list
ANY Compare value to each value returned by the subquery
ALL Compare value to every value returned by the subquery

SELECT ename, sal, deptno
FROM emp
WHERE sal IN (SELECT MIN(sal)

 FROM emp
 GROUP BY deptno);

ENAME SAL DEPTNO
SMITH 800 20
JAMES 950 30
MILLER 1300 10

19

Using ANY Operator in
Multiple-Row Subqueries

SELECT ename, sal, job

 FROM emp

 WHERE sal < ANY

 (SELECT sal

 FROM emp

 WHERE job = 'CLERK')

 AND

 job <> 'CLERK' ;

ENAME SAL JOB
WARD 1250 SALESMAN
MARTIN 1250 SALESMAN

20

Using ALL Operator in
Multiple-Row Subqueries

SELECT ename, sal, job
 FROM emp
 WHERE sal > ALL
 (SELECT AVG(sal)
 FROM emp
 GROUP BY deptno);

ENAME SAL JOB
JONES 2975 MANAGER
SCOTT 3000 ANALYST
KING 5000 PRESIDENT
FORD 3000 ANALYST

21

Summary
Subqueries are useful when a query is based on unknown
values.

22

SELECT select_list

FROM table

WHERE expr

(SELEECT select_list

 FROM table

WHERE expr);

23

Practice Overview

Creating subqueries to query values based on unknown criteria
Using subqueries to find out what values exist in one set of data
and not in another

1. Write a query to display the employee name and hiredate for all
employees in the same department as Blake. Exclude Blake.

SELECT ename, hiredate
 FROM emp
 WHERE deptno =
 (SELECT deptno
 FROM emp
 WHERE ename = 'BLAKE')
 AND ename <> 'BLAKE';

2. Create a query to display the employee number and name for all employees who earn
more than the average salary. Sort the results in descending order of salary.

SELECT empno, ename
 FROM emp
 WHERE sal >
 (SELECT AVG(sal)
 FROM emp);

3. Write a query to display the employee number and name for all
employees who work in a department with any employee whose name
contains a T. Save your SQL statemant in a file called p6q3.sql .

SELECT empno, ename
 FROM emp
 WHERE deptno IN
 (SELECT deptno
 FROM emp
 WHERE ename LIKE '%T%');

24

4. Display the employee name, department number, and job title for all
employees whose department location is Dallas.

Solution with subquery:

SELECT ename, empno, job
 FROM emp
 WHERE deptno = (SELECT deptno
 FROM dept
 WHERE loc ='DALLAS') ;

Solution with equijoin:

SELECT ename, empno, job
 FROM emp e, dept d
 WHERE e.deptno = d.deptno
 AND d.loc='DALLAS';

ENAME EMPNO JOB
SMITH 7369 CLERK
JONES 7566 MANAGER
SCOTT 7788 ANALYST
ADAMS 7876 CLERK
FORD 7902 ANALYST

5. Display the employee name and salary of all employees who report to
King.

Solution with self join:

SELECT e.ename, e.sal

 FROM emp e , emp d

 WHERE e.mgr = d.empno

 AND

 d.ename ='KING';

Solution with subquery:

25

SELECT ename, sal

 FROM emp

 WHERE mgr = (SELECT empno

 FROM emp

 WHERE ename = 'KING');

6. Display the department number, name,, and job for all employees in the
Sales department.

SELECT e.deptno, e.ename, e.job , d.dname
 FROM emp e , dept d
 WHERE e.deptno = d.deptno
 AND
 d.dname = 'SALES'

If yo u have time, complete the following exercises:

7. Modify p6q3.sql to display the employee number, name, and salary for all
employees who earn more than the average salary and who work in a
department with any employee with a T in their name. Rerun your
query.

SELECT empno, ename , sal
 FROM emp
 WHERE sal > (SELECT AVG (sal)
 FROM emp)
AND
 deptno IN (SELECT deptno
 FROM emp
 WHERE ename LIKE '%T%');

EMPNO ENAME SAL

7902 FORD 3000
7788 SCOTT 3000
7566 JONES 2975
7698 BLAKE 2850

26

Exists

In the previous section, we used IN to link the inner query and the outer query in a subquery
statement. IN is not the only way to do so -- one can use many operators such as >, <, or =.
EXISTS is a special operator that we will discuss in this section.

EXISTS simply tests whether the inner query returns any row. If it does, then the outer query
proceeds. If not, the outer query does not execute, and the entire SQL statement returns
nothing.

The syntax for EXISTS is:

SELECT "column_name1"
FROM "table_name1"
WHERE EXISTS

(SELECT *
 FROM "table_name2"
 WHERE [Condition])

27

SELECT ename, deptno
FROM emp
WHERE EXISTS

(SELECT *
FROM emp
WHERE sal >3500)

ENAME DEPTNO
SMITH 20
ALLEN 30
WARD 30
JONES 20
MARTIN 30
BLAKE 30
CLARK 10
SCOTT 20
KING 10
TURNER 30
ADAMS 20
JAMES 30
FORD 20
MILLER 10
14 rows returned in 0,01 seconds

SELECT ename, deptno
FROM emp
WHERE EXISTS

(SELECT *
FROM emp
WHERE sal >3500)

no data found

28

WHERE clause
Most often, the subquery will be found in the WHERE clause. These subqueries are also
called nested subqueries.

select *

from all_tables tabs

where tabs.table_name in

(select cols.table_name

 from all_tab_columns cols

 where cols.column_name = 'ENAME');

Limitations:

Oracle allows up to 255 levels of subqueries in the WHERE clause.

29

FROM clause
A subquery can also be found in the FROM clause. These are called inline views.

For example:

select dept.deptno, subquery1.total_amt
from dept,
 (select emp.deptno, Sum(emp.sal) total_amt
 from emp
 group by deptno) subquery1
WHERE subquery1.deptno = dept.deptno

DEPTNO TOTAL_AMT
30 9400
10 8750
20 10875
3 rows returned in 0,02 seconds

In this example, we've created a subquery in the FROM clause as follows:

 (select emp.deptno, Sum(emp.sal) total_amt
 from emp
 group by deptno) subquery1
This subquery has been aliased with the name subquery1. This will be the name used to
reference this subquery or any of its fields.

Limitations:

Oracle allows an unlimited number of subqueries in the FROM clause.

30

SELECT clause
A subquery can also be found in the SELECT clause.

For example:

select tbls.owner, tbls.table_name,
 (select count(column_name) as total_columns
 from all_tab_columns cols
 where cols.owner = tbls.owner
 and cols.table_name = tbls.table_name) subquery2
from all_tables tbls;

OWNER TABLE_NAME SUBQUERY2
SYS DUAL 1
SYS SYSTEM_PRIVILEGE_MAP 3
SYS TABLE_PRIVILEGE_MAP 2
SYS STMT_AUDIT_OPTION_MAP 3
SYS AUDIT_ACTIONS 2
SYSTEM DEF$_TEMP$LOB 3
SYSTEM HELP 3
CTXSYS DR$OBJECT_ATTRIBUTE 14
CTXSYS DR$POLICY_TAB 2
CTXSYS DR$NUMBER_SEQUENCE 1
MDSYS OGIS_SPATIAL_REFERENCE_SYSTEMS 5
MDSYS OGIS_GEOMETRY_COLUMNS 10
MDSYS SDO_UNITS_OF_MEASURE 12
MDSYS SDO_PRIME_MERIDIANS 6
MDSYS SDO_ELLIPSOIDS 10

More than 15 rows available. Increase rows selector to view more rows.

15 rows returned in 0,15 seconds CSV Export

In this example, we've created a subquery in the SELECT clause as follows:

(select count(column_name) as total_columns
 from all_tab_columns cols
 where cols.owner = tbls.owner
 and cols.table_name = tbls.table_name) subquery2

31

The subquery has been aliased with the name subquery2. This will be the name used to
reference this subquery or any of its fields.

The trick to placing a subquery in the select clause is that the subquery must return a single
value. This is why an aggregate function such as SUM, COUNT, MIN, or MAX is commonly
used in the subquery.

32

http://techonthenet.com/sql/max.php
http://techonthenet.com/sql/min.php
http://techonthenet.com/sql/count.php
http://techonthenet.com/sql/sum.php

Stepping through Sub-Queries in Oracle
(Page 1 of 5)

This is the first article in a series concentrating on working with sub-queries in Oracle. Sub-
queries really have tremendous depth. In this series I will show you several scenarios where
they can be efficiently used to retrieve information from Oracle databases.

As this is the first in series, I will be concentrating on the following topics:

• How to work with a “dual” table.
• How to analyze and identify the steps needed to deal with a sub-query.
• How to frame queries for each of the identified steps.
• How to combine all the framed queries and design a single command to retrieve the

final output.

A primer on the “dual” table in Oracle

This section mainly explains the “dual” table in Oracle. I shall use this table in a creative
manner wherever required in this article as well as upcoming articles. If you are already
familiar with the "dual” table, feel free to skip to the next section.

What is a “dual” table? It is a simple table which is created/installed automatically during the
installation of the Oracle database. To understand it, let us consider the following SELECT
statement:

SELECT 123 FROM dual;

The above statement simply returns 123. Let us work with another statement:

SQL> SELECT 10,20,’Veri Taban Yönetim Sistemleri’,3400 FROMı
dual;

Results Explain Describe Saved SQL History

10 20 'VERITABANI

YÖNETIMSISTEMLERI'

3400

10 20 Veri Taban Yönetimı
Sistemleri

3400

1 rows returned in 0,00 seconds CSV Export

This returns any constant values you provide as columns. So “dual” is just a convenience
table. It is simply a one column and one row table that exists as part of SYS user. You can
use the DESC command to display the structure of a “dual” table as follows:

33

DESC dual;

The above statement returns the following output:

ResultsExplain Describe Saved SQL History

Table Column Data Type Length Precision Scale Primary
Key

Nullable Default Comment

DUAL DUMMY Varchar2 1 - - - - -

You can observe that there exists only one column named “dummy” in the "dual" table.
Similarly, you can even display all the rows in the "dual" table as follows:

SELECT * FROM dual;

DUMMY

X

1 rows selected

From the above, you can observe that there exists only one row with a dummy value of "x."

You don't really need to use the “dual” table at all. It is only used when you want to
add/include any constant values in your queries. You can even do calculations as follows:

SQL> SELECT 12 * 13 + 14 FROM dual;

12*13+14

170

1 rows selected

34

Stepping through Sub-Queries in Oracle - The simplest sub-query in Oracle
(Page 2 of 5)

Before explaining sub-queries, let us consider the following scenario:

SQL> SELECT empno,ename,sal,deptno FROM emp

WHERE sal = 5000;

EMPNO ENAME SAL DEPTNO

--------- ---------- ----------- ------------

7839 KING 5000 10

1 rows selected

Let us modify the above statement as follows:

SQL> SELECT empno,ename,sal,deptno FROM emp

WHERE sal = (SELECT 5000 FROM dual);

I already explained the “dual” table in the previous section. In the above statement, I have
two SELECT statements as part of a single command. The following is the order in which the
above statement gets executed:

• The innermost query gets executed first.
• In this case, the query “select 5000 from dual” gets executed first.
• Once the innermost query gets executed, it returns a value to the immediate outer

query. In this case, it is 5000.
• The entire innermost query gets replaced with the new value returned by it. In this

case, the outer query virtually becomes “select empno, ename, sal, deptno from emp
where sal = 5000.”

• And finally, the outer query gets executed, which retrieves KING’s details.

In the above case, I used a SELECT query as part of another SELECT query; thus it is called
a “sub-query.” You can even modify the above statement to include an expression as follows:

SQL> SELECT empno,ename,sal,deptno FROM emp

WHERE sal = (SELECT 2000+3000 FROM dual);

The above statement first evaluates “2000+3000” (which results in 5000) as part of executing
the inner query. Based on the returned value (which is 5000), the outer query gets executed.

The next section will show you a few simple and practically used sub-queries.

35

Stepping through Sub-Queries in Oracle - A sub-query with aggregate functions (or
group functions) in Oracle
(Page 3 of 5)

I already introduced sub-queries in the previous section. In this section, I shall start giving
you some practical examples.

Let us consider that I would like to retrieve the details of the highest paid employee. Let us
write the question in a meaningful manner and identify the steps as follows:

From the above figure, you have two steps to work with for the query. The following is the
order you must follow (based on the above figure):

• Find the highest salary from the table (1)
• Based on the value you get, retrieve the employee details like empno, ename, etc.

belonging to that salary. (2)

The following is the statement which retrieves the highest salary:

SELECT MAX(sal) FROM emp

To retrieve an employee's details based on a given salary (say 5000), the query would be as
follows:

SELECT empno,ename,sal,deptno FROM emp

WHERE sal = 5000

Just replace the value 5000 with the query that gives you the highest salary. The complete
statement would be as follows:

SQL> SELECT empno,ename,sal,deptno FROM emp

WHERE sal = (SELECT MAX(sal) FROM emp);

Now, let us walk through its execution:

• The innermost query gets executed first.
• In this case, the query “select max(sal) from emp” gets executed first. It retrieves the

highest value in the column “sal” from the table “emp.”
• Once the innermost query gets executed, it returns a value to the immediate outer

query. In this case, it is 5000.
• The entire innermost query gets replaced with the new value returned by it. In this

case, the outer query virtually becomes “select empno, ename, sal, deptno from emp
where sal = 5000.”

36

• And finally, the outer query gets executed, which retrieves KING’s details.

Let us end this section with a final touch. Why can’t I write the above query as follows?

SQL> SELECT empno,ename,sal,deptno FROM emp

WHERE sal = MAX(sal)

Or even the following:

SQL> SELECT empno,ename,sal,deptno FROM emp

WHERE MAX(sal) = sal

None of the above two queries get executed successfully. The reason is that a condition in a
WHERE clause cannot contain any aggregate function (or group function) without a sub-
query!

37

Stepping through Sub-Queries in Oracle - Designing sub-queries to deal with more than
one table (or different tables)
(Page 4 of 5)

Let us consider that I would like to retrieve KING's department name. All department names
are available in the table “dept,” which is quite different from “emp” table. Let us write the
question in a meaningful manner and identify the steps as follows:

From the above figure, you have two steps to go through with the query. The following is the
order you must follow (based on the above figure):

• Find KING's department number (1).
• Based on the value you get, retrieve the department details like dname, loc. etc

belonging to that department number (2)

The following is the statement which retrieves KING's department number:

SELECT deptno FROM emp WHERE ename = ‘KING’

To retrieve department details based on a given department number (say 30), the query would
be as follows:

SELECT dname FROM dept

WHERE deptno = 30

Just replace the value 30 with the query that gives you KING's department number. The
complete statement would be as follows:

SQL> SELECT dname FROM dept

WHERE deptno = (SELECT deptno FROM emp WHERE ename=’KING’);

Now, let us walk through its execution:

• The innermost query gets executed first.
• In this case, the query “select deptno from emp where ename=’king’” gets executed

first. It retrieves KING's department number.
• Once the innermost query gets executed, it returns a value to the immediate outer

query. In this case, it is 10.
• The entire innermost query gets replaced with the new value returned by it. In this

case, the outer-query virtually becomes “select dname from dept where deptno = 10.”
• And finally, the outer query gets executed, which retrieves KING’s department details

38

Stepping through Sub-Queries in Oracle - An example of a nested sub-query (or multi-
level sub-query)
(Page 5 of 5)

Let us consider that I would like to retrieve the department name of the highest paid
employee. Let us write the question in a meaningful manner and identify the steps as follows:

From the above figure, you have three steps to go through with the query. The following is
the order you must follow (based on the above figure):

• Find the highest salary (1).
• Based on the value you get, retrieve the department number belonging to that salary

(2).
• Based on the value you get, find the department name belonging to that department

number (3).

The following is the statement which finds the highest salary:

SELECT MAX(sal) FROM emp

To retrieve a department number based on a given salary (say 2000), the query would be as
follows:

SELECT deptno FROM emp

WHERE sal = 2000

To retrieve a department name based on a given department number (say 20), the query would
be as follows:

SELECT dname FROM dept

WHERE deptno = 20

Combining all of the above queries according to the order given above, the new query would
be as follows:

SQL> SELECT dname FROM dept

WHERE deptno = (SELECT deptno FROM emp

WHERE sal = (SELECT MAX(sal) FROM EMP));

You can observe the following figure to understand how the execution takes place. You can
also observe the underlined columns on how they relate logically:

39

Now, let us walk through its execution:

• The innermost query gets executed first.
• In this case, the query “select max(sal) from emp” gets executed first. It retrieves the

highest salary. In this case it would be 5000.
• The entire innermost query gets replaced with the new value returned by it. In this

case, the immediate outer query virtually becomes “select deptno from emp where sal
= 5000.” Once this query gets executed, it returns a department number, which is 10
in this case.

• And finally, the outermost query virtually becomes “select dname from dept where
deptno = 10,” which retrieves KING’s department details.

Any bugs, doubts, suggestions, feedback etc. are highly appreciated at
http://jagchat.spaces.live.com

40

Sub-Queries with multiple columns in Oracle

Let us try to work with the following query:

SELECT
*
FROM emp
WHERE (sal,mgr) = (3000,7566)

ORA-00920: invalid relational operator

The above would never work and results in giving you the “invalid relational operator” error.
This is because you can compare only one value at a time and not more than one. The
following is a small trick to overcome the problem:

SELECT
*
FROM emp
WHERE (sal,mgr) = (SELECT 3000,7566 FROM dual)

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7788 SCOTT ANALYST 7566 09/12/1982 3000 - 20
7902 FORD ANALYST 7566 03/12/1981 3000 - 20

2 rows returned in 0,00 seconds CSV Export

I just made both of those two values part of the sub-query and it works fine! Both of those
values are not from any table, so I used “dual.” Now you can observe the power of the “dual”
table. If you want to learn more about “dual,” please refer to my first article in this series.

Let us work with a more practical sub-query rather than with a “dual” table as follows:

SELECT
*
FROM emp
WHERE (sal,mgr) =
(SELECT sal,mgr FROM emp
 WHERE sal = (SELECT MIN(sal) FROM EMP
 WHERE sal > (SELECT MIN(sal) FROM
emp)))

41

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7900 JAMES CLERK 7698 03/12/1981 950 - 30

1 rows returned in 0,00 seconds CSV Export

The above returns all the employees who are earning the same salary and working under the
same manager of the employee earning the second least salary!

42

Inserting Sub-Queries in SELECT Statements in Oracle - Sub-
Queries returning single and multiple values in Oracle

Let us consider the following statement:

SELECT
*
FROM emp
WHERE sal = 800

When you execute the above statement, the condition in the WHERE clause works with only
a single value. Let us rewrite the above statement with a plain sub-query as follows:

SELECT
*
FROM emp
WHERE sal = (SELECT MIN(sal) FROM emp)

From the above statement you can understand that the sub-query returns one and only one
value (or single value) and the query works fine.

If we would like to work with more than one value in a condition (of equality), you may need
to work something like the following:

SELECT
*
FROM emp
WHERE empno IN (7902,7788)

Let us frame the above with a sub-query as follows:

SELECT

*

FROM emp

WHERE empno IN

(SELECT empno FROM emp

 WHERE sal = (SELECT MAX(sal) FROM EMP

43

 WHERE sal < (SELECT
MAX(sal) FROM emp)))

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7788 SCOTT ANALYST 7566 09/12/1982 3000 - 20
7902 FORD ANALYST 7566 03/12/1981 3000 - 20

2 rows returned in 0,03 seconds CSV Export

The above query gives us all the employees earning the second highest salary! In the above
case, the second level sub-query returns more than one value (or two employee numbers).
Therefore, I provided the IN operator as part of the condition. If you replace the IN with “=”
in the above query, it will return with an error stating “single row sub-query returns more than
one row.” When you receive such an error, try to replace “=” with “IN” wherever
appropriate.

44

Inserting Sub-Queries in SELECT Statements in Oracle - Sub-Queries
as part of the BETWEEN operator in Oracle

BETWEEN is a unique operator in Oracle. Let me show you a small example of this:

SELECT
*
FROM emp
WHERE sal BETWEEN 1000 and 3000

It is very easy to understand the above query as it returns all the employees who earn salaries
between 1000 and 3000 (both inclusive). Let us rewrite the above query as follows:

SELECT
*
FROM emp
WHERE sal BETWEEN
(SELECT 1000 FROM dual) AND 3000

I just replaced 1000 with a simple sub-query using “dual.” If you are new to the “dual” table,
please refer to my first article in this series. Let us work a bit more practically as follows:

SELECT
*
FROM emp
WHERE sal BETWEEN
 (SELECT MIN(sal) FROM emp) and 2000

We can even work a bit differently. Let us go through the following query:

SELECT
Grade
FROM salgrade
WHERE
 (SELECT MAX(sal) FROM emp)
 BETWEEN losal AND hisal

The above gives you the salary grade of the highest salary!

45

Inserting Sub-Queries in SELECT Statements in Oracle - Derived
tables (or inline views) with Sub-Queries in Oracle

Can we write sub-queries in (or as part of) the FROM clause? The answer is YES and you can
use it very efficiently in some scenarios.

Let us consider the following statement:

SELECT empno,ename,sal,sal*12 AS AnnSal
FROM emp
WHERE AnnSal > 30000

If I execute the above statement, it will result in an error saying that “AnnSal” is an “Invalid
Identifier.” The reason is that “AnnSal” is not a column existing in the table “emp.” It is
simply an alias (or some reasonable name). We are not allowed to work with a column alias in
any of the conditions present in WHERE clause.

Let us modify the above statement to make it work. Try the following now:

SELECT empno,ename,sal,AnnSal
FROM (
 SELECT empno,ename,sal,sal*12 AS AnnSal
 FROM emp
)
WHERE AnnSal > 30000

The above statement is totally different from the previous one. Within the above statement,
the outer query doesn’t rely on any specific physical table. The output (or result set) of the
inner query is considered as a table for the outer query! The inner query is very similar to that
of a view which doesn’t have any physical view name, and it gets created and destroyed on
the fly.

So, according to the inner query, it retrieves four columns (empno, ename, sal, AnnSal). The
outer query can work with all four columns as if they are directly from a physical table.

As you are trying to define/derive your own table of information from an existing physical
table, you call it as a derived table (or inline view). Even the derived tables can be nested to
any number of levels with further sub-derived tables as part of FROM clauses.

46

Inserting Sub-Queries in SELECT Statements in Oracle - Sub-
Queries with CASE structure in Oracle SELECT statements

Now let us go through an interesting topic on CASE structure. Let us see how a CASE
structure works. Consider the following statement:

SELECT
 empno,
 ename,
 CASE job
 WHEN 'SALESMAN' THEN 'SALES'
 WHEN 'MANAGER' THEN 'MGMT'
 ELSE job
 END AS jobfunction,
 sal
FROM emp

EMPNO ENAME JOBFUNCTION SAL
7369 SMITH CLERK 800
7499 ALLEN SALES 1600
7521 WARD SALES 1250
7566 JONES MGMT 2975
7654 MARTIN SALES 1250
7698 BLAKE MGMT 2850
7782 CLARK MGMT 2450
7788 SCOTT ANALYST 3000
7839 KING PRESIDENT 5000
7844 TURNER SALES 1500
7876 ADAMS CLERK 1100
7900 JAMES CLERK 950
7902 FORD ANALYST 3000
7934 MILLER CLERK 1300

14 rows returned in 0,01 seconds CSV Export

When the above query is executed, it returns four columns (empno, ename, jobfunction,
sal). The only eye-catching issue from the above is the following structure:

 CASE job
 WHEN 'SALESMAN' THEN 'SALES'
 WHEN 'MANAGER' THEN 'MGMT'
 ELSE job
 END AS jobfunction

47

The above dictates something very similar to the following:

• If the value of “job” is “salesman” return “sales.”
• If the above condition fails and if the value of “job” is “manager” return “mgmt.”
• If both of the above conditions fail then return the same value of “job.”
• All the values must be returned in a new column with the heading “jobfunction.”

You need to observe that I specified the column (job) along with CASE. The conditions of
WHEN work with the values available within that column. We can even work with different
relational (and SQL) operators within the WHEN condition as shown in the following
example:

SELECT
 empno,
 ename,
 CASE
 WHEN comm IS NULL OR comm=0 THEN '-NA-'
 ELSE TO_CHAR(comm)
 END AS comm,
 sal
FROM emp

EMPNO ENAME COMM SAL
7369 SMITH -NA- 800
7499 ALLEN 300 1600
7521 WARD 500 1250
7566 JONES -NA- 2975
7654 MARTIN 1400 1250
7698 BLAKE -NA- 2850
7782 CLARK -NA- 2450
7788 SCOTT -NA- 3000
7839 KING -NA- 5000
7844 TURNER -NA- 1500
7876 ADAMS -NA- 1100
7900 JAMES -NA- 950
7902 FORD -NA- 3000
7934 MILLER -NA- 1300

14 rows returned in 0,01 seconds CSV Expor

In the above case, the conditions are directly used within the WHEN statement and you need
not specify any column with the CASE.

Finally, you can even work with sub-queries within the CASE structure as follows:

48

SELECT
 empno,
 ename,
 CASE
 WHEN sal >= (SELECT avg(sal) FROM emp) THEN
'HIGH'
 ELSE 'LOW'
 END AS pay,
 sal
FROM emp

The above returns a new column named “pay,” which contains either “HIGH” or “LOW”
based on their salary compared to the average salary of all employees.

49

Inserting Sub-Queries in SELECT Statements in Oracle - Sub-
Queries as (or part of) columns in Oracle SELECT statements

Before getting into sub-queries as part of columns, let us look at the following small query:

SELECT
 MAX(sal) AS highest,
 MIN(sal) AS least,
 COUNT(*) AS employees,
 SUM(sal) AS total
FROM emp

Everyone can easily understand that the above query returns only one row containing four
values of aggregation. Let us rewrite the above query using sub-queries to get the same
output.

SELECT
 (SELECT MAX(sal) FROM emp) AS highest,
 (SELECT MIN(sal) FROM emp) AS least,
 (SELECT COUNT(*) FROM emp) AS employees,
 (SELECT SUM(sal) FROM emp) AS total
FROM dual

You can observe that I replaced all aggregate functions with sub-queries! Another important
issue to concentrate on in the above query is the “dual” table. As the sub-queries in the above
statement are working individually by themselves, I need not work with any table and thus I
used the “dual” table. If you want to learn more about the “dual” table, please go through my
first article in this same series.

Now, let us look at an interesting query which deals with sub-queries at both the column level
and the CASE level. The following is the query:

50

SELECT
 empno,
 ename,
 sal AS salary,
 ROUND((sal -(SELECT AVG(sal) FROM emp)),2) AS
avgcompare,
 CASE
 WHEN sal >= (SELECT AVG(sal) FROM emp) THEN
'HIGH'
 ELSE 'LOW'
 END AS paying
FROM emp

The following is the sample output of the above query:

EMPNO ENAME SALARY AVGCOMPARE PAYING
------- ---------- -------- ------------ ------
7839 KING 5000 2926.79 HIGH
7698 BLAKE 2850 776.79 HIGH
.
.
7654 MARTIN 1250 -823.21 LOW
7499 ALLEN 1600 -473.21 LOW

Any bugs, doubts, suggestions, feedback etc. are highly appreciated at
http://jagchat.spaces.live.com

51

	FROM clause
	SELECT clause

