
Displaying Data from

Multiple Tables

Chapter 4

1

Objectives

After completing this lesson, you should be able to do the following:
• Write SELECT statements to access

data from more than one table using
equality and nonequality joins

• View data that generally does not meet a
join condition by using outer joins

• Join a table to itself

Lesson Aim

This lesson covers how to obtain data from more than one table, using the

different methods available.

2

Cartesian Product

• A Cartesian product is formed when:
• A join condition is omitted
• A join condition is invalid
• All rows in the first table are joined to

 all rows in the second table

To avoid a Cartesian product, always include a valid join condition in a
WHERE clause.

3

Generating a Cartesian Product

SELECT ename, dname
FROM emp, dept;

ENAME DNAME
BLAKE ACCOUNTING
SMITH ACCOUNTING
ALLEN ACCOUNTING

56 Rows Selected

4

What Is a Join?
Use a join to query data from more than one table.

Old Syntax

Write the join condition in the WHERE clause.

SELECT tablel.column, table2. column2
FROM table1, table2
WHERE tablel. columnl = table2. column2;

ANSI Syntax

Write the join condition in the ON clause.

SELECT tablel.column, table2. column2
FROM table1 INNER JOIN table2
ON tablel. columnl = table2. column2;

Prefix the column name with the table name when the same column name appears
in more than one table.

Defining Joins

When data from more than one table in the database is required, a join condition
is used. Rows in one table can be joined to rows in another table according to
common values existing in corresponding columns, that is, usually primary and
foreign key columns.

TO display data from two or more related tables, write a simple join condition in
the WHERE clause, in the syntax:

Table1.column1 denotes the table and column from which data is retrieved

Table1. column1 = table2. column2 is the condition that joins (or relates) the
tables together.

5

Types of Joins

• Equijoin

• Non-equijoin

• Outer join

• Self join

6

Types of Joins
There are two main types of join conditions:

• Equijoins
• Non-equijoins

Additional join methods include the following
• Outerjoins
• Selfjoins
• Set Operators

Note: Set operators are not covered in this course . They are covered in another
SQL course.

7

What Is an Equijoin?

Equijoins
To determine the name of an employee’s department, you compare the value in
the DEPTNO column in the EMP table with the DEPTNO values in the DEPT
table.

The relationship between the EMP and DEPT table is an equijoin - that is,
values in the DEPTNO column on both tables must be equal.
Frequently, this type of join involves primary and foreign key complements.

Note: Equijoins are also called simple joins or innerjoins.

Obtaining Data from Multiple Tables

SELECT e.empno, e.deptno, d.loc
FROM emp e, dept d
WHERE e.deptno = d.deptno;

Data from Multiple Tables

Sometimes you need to use data from more than one table. In the slide example,

the report displays data from two separate tables.

• EMPNO exists in the EMP table

• DEPTNO exists in both the EMP and DEPT the Tables.

• LOC exists in the DEPT table.

To prodııce the report. you need to link EMP and DEPT tables and access data

from both of them.

8

ANSI Syntax

SELECT e.empno, e.deptno, d.loc
FROM emp e inner join dept d
on e.deptno = d.deptno;

9

Retrieving Records with Equijoins
SELECT EMP.EMPNO, EMP.ENAME, EMP.DEPTNO,

DEPT.DEPTNO, DEPT.LOC

FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO

EMPNO ENAME DEPTNO DEPTNO LOC
7698 BLAKE 30 30 CHICAGO
7369 SMITH 20 20 DALLAS
7499 ALLEN 30 30 CHICAGO

14 rows selected.

Retrieving Records with Equijoins
in the slide examaple.
• The SELECT clause specifies the column names to retrieve:

- employee name, employee number, and department number, which
are columns in the emp table

- department number, department name, and location, which are
columns in the DEPT table.

The FROM clause specifies the two tables that the database must access:
EMP table
DEPT table

The WHERE clause specifies how the tables are to be joined:
EMP.DEPTNO=DEPT.DEPTNO

10

Oualifying Ambiguous Column Names
Use table prefixes to qualify column names that are in multiple tables.
Improve performance by using table prefixes.
Distinguish columns that have identical names but reside in different
tables by using column aliases.

Qualifying Ambiguous Column Names

You need to gualify the names of the columns in the WHERE clause ""itli the

table names to avoid ambiguity without the table prefixes. the DEPTNO column

could be from either the DEPT table or the EMP table. It is necessary to add the

table prefix to execute your query.

If there are no common column names between the two tables, there is no need

to qualify the columns. Howevwr, you will gain improved performance by using

the table prefix because you tell the Oracle Server exactly where to find the

columns.

11

EQUIJOIN

SELECT emp.empno, emp.ename, emp.deptno,
dept.deptno, dept.loc
FROM emp, dept
WHERE emp.deptno = Dept.deptno;

EMPNO ENAME DEPTNO DEPTNO LOC
7698 BLAKE 30 30 CHICAGO
7369 SMITH 20 20 DALLAS

14 rows selected.

12

Using Table Aliases
The following two scripts are equivalent. In the second one table aliases are used.

SELECT e.ename, e.deptno, d.dname

FROM emp e , dept d

WHERE e.deptno = d.deptno ;

ENAME DEPTNO DNAME
BLAKE 30 SALES
SMITH 20 RESEARCH

14 rows selected.

13

Additional Search Conditions
Using the AND Operator

Additional Search Conditions
In addition to the join, you may have criteria for your WHERE clause. For
example, to display King's employee number, name, department number, and
departments localion, you need an additional condition in the WHERE clause.

SELECT EMP.EMPNO, EMP.ENAME, EMP.DEPTNO,

DEPT.DEPTNO, DEPT.LOC

FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO

AND INITCAP(ename) = 'King' ;

EMPNO ENAME DEPTNO DEPTNO LOC
7839 KING 10 10 NEW YORK

14

ANSI Ssyntax
ORACLE’da Inner Join ‘i yapan

FROM emp e, dept d WHERE e.deptno = d.deptno

yerine

FROM emp e INNER JOIN dept d

inner Join koşulu yazıldıktan sonra iki tablo arasında bağlantıyı kuran

ON e.deptno = d.deptno

koşulu yazılır.

Eğer, ayrıca satırlardan yeni süzme yapılacaksa WHERE ile istenen koşul konulabilir:

WHERE INITCAP(ename) = 'King' ;

Biçimindeki koşul yazılabilir.

Örnek

SELECT e.empno, e.ename, e.deptno, d.deptno, d.loc

FROM emp e INNER JOIN dept d

ON e.deptno = d.deptno

WHERE INITCAP(ename) = 'King' ;

EMPNO ENAME DEPTNO DEPTNO LOC
7839 KING 10 10 NEW YORK

15

Non-Equijoins

The relationship between the EMP table and the SALGRADE table is a non-equijoin,
meaning that no column in the EMP table corresponds directly to a column in the
SALGRADE table.

The relationship between the two tables is that the SAL column in the EMP table is between
the LOSAL and HISAL column of the SALGRADE table.

The relationship is obtained using an operator other than equal (=).

SELECT *
FROM emp ;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7698 BLAKE MANAGER 7839 01/05/1981 2850 30

14 rows selected.

SELECT *
FROM salgrade ;

GRADE LOSAL HISAL
1 700 1200
2 1201 1400
3 1401 2000
4 2001 3000
5 3001 9999

5 rows selected.

16

Retreive records where Salary in the EMP table is between low salary and high
salary in the SALGRADE table.

SELECT e.ename, e.sal, s.grade

FROM EMP e, SALGRADE s

WHERE e.sal

BETWEEN s.losal AND s.hisal ;

ENAME SAL GRADE
SMITH 800 1
JAMES 950 1

14 rows selected.

17

ANSI Syntax

SELECT e.ename, e.sal, s.grade
FROM EMP e INNER JOIN SALGRADE s
ON e.sal
BETWEEN s.losal AND s.hisal ;

ENAME SAL GRADE
SMITH 800 1
JAMES 950 1

14 rows selected.

18

Joining More Than Two Tables

SELECT e.ename, e.deptno, d.dname, s.grade

FROM emp e, dept d, salgrade s

WHERE e.deptno = d.deptno AND

e.sal BETWEEN s.losal AND hisal;

ENAME DEPTNO DNAME GRADE
KING 10 ACCOUNTING 5
CLARK 10 ACCOUNTING 4
MILLER 10 ACCOUNTING 2
FORD 20 RESEARCH 4
SCOTT 20 RESEARCH 4
JONES 20 RESEARCH 4
ADAMS 20 RESEARCH 1
SMITH 20 RESEARCH 1
BLAKE 30 SALES 4
ALLEN 30 SALES 3
TURNER 30 SALES 3
MARTIN 30 SALES 2
WARD 30 SALES 2
JAMES 30 SALES 1

14 rows selected.

19

ANSI Syntax

SELECT e.ename, e.deptno, d.dname, s.grade

FROM salgrade s, emp e INNER JOIN dept d

ON e.deptno = d.deptno

WHERE

e.sal BETWEEN s.losal AND s.hisal;

ENAME DEPTNO DNAME GRADE
KING 10 ACCOUNTING 5
CLARK 10 ACCOUNTING 4
MILLER 10 ACCOUNTING 2

14 rows selected.

20

Retrieving Records with Non-Equijoins

SELECT e.ename, e.sal, s.grade
FROM EMP e, SALGRADE s
WHERE e.sal +e.comm > s.hisal

ENAME SAL GRADE
TURNER 1500 1
WARD 1250 1
ALLEN 1600 1
MARTIN 1250 1
TURNER 1500 2
WARD 1250 2
ALLEN 1600 2
MARTIN 1250 2
MARTIN 1250 3

9 rows selected.

Non-Equijoins (continued)

The slide example creates a non-equijoin to evaluate an employee's salary grade. The salary
must be between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is
executed. No employee is repeated in the list. There are two reasons for this:

None of the rows in the salary grade table contain grades that overlap. That is, the
salary value for an employee can only lie between the low salary and high salary
values of one of the rows in the salary grade table.

All of the employees' salaries lie within the limits provided by the salary grade table.
That is, no employee earns less than the lowest value contained in the LOSAL column or
more than the highest value contained in the HISAL column.

Note: Other operators such as <= and >= could be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using BETWEEN.
Table aliases have been specified for performance reasons, not because of possible ambiguity.

21

ANSI Syntax (Non Equijoin)

SELECT e.ename, e.sal, s.grade
FROM EMP e INNER JOIN SALGRADE s
ON e.sal +e.comm > s.hisal ;

ENAME SAL GRADE
ALLEN 1600 1
WARD 1250 1
MARTIN 1250 1
TURNER 1500 1
ALLEN 1600 2
WARD 1250 2
MARTIN 1250 2
TURNER 1500 2
MARTIN 1250 3

9 rows selected.

22

Outer joins

When two tables are joined with an inner join, data will only be returned if
matching data exists in both tables. An outer join is like saying "and also include
the rows from one table if there are no matching rows in the other one."

With an outer join the columns from the table where data is "missing" are
returned as NULL values.

Outer joins come in two basic flavours, called Left and Right. Left outer joins
mean that the data must be contained in the table defined to the left side of the
equivalence, but not necessarily the right hand side. Right outer joins, of course,
work the other way around.

To illustrate this, cut and paste the code below into a Query Analyser window
and try running it. I have used the newer ANSI syntax here, and the older
equivalents are included but commented out using the "--" comment notation.
Comment them back in if you want to try them.

23

Outer Joins
Returning Records with No Direct Match with Outer Joins
If a row does not satisfy a join condition, the row will not appear in the query
result. For example, in the equijoin condition of EMP and DEPT tables,
department OPERATIONS does not appear because no one works in that
department.

SELECT e.ename , e.deptno, d.dname
FROM emp e, dept d
WHERE e.deptno = d.deptno;

ENAME DEPTNO DNAME
BLAKE 30 SALES
SMITH 20 RESEARCH
ALLEN 30 SALES
WARD 30 SALES
JONES 20 RESEARCH
MARTIN 30 SALES
CLARK 10 ACCOUNTING
SCOTT 20 RESEARCH
KING 10 ACCOUNTING
TURNER 30 SALES
ADAMS 20 RESEARCH
JAMES 30 SALES
FORD 20 RESEARCH
MILLER 10 ACCOUNTING

14 rows selected.

No employee in the OPERATIONS department

24

Outer Joins

Returning Records with No Direct Match with Outer Joins

If a row does not satisfy a join condition, the row will not appear in the query
result. For example, in the equijoin condition of EMP and DEPT tables,
department OPERATIONS does not appear because no one works in that
department.

Outer Joins (Old usage)
You use an outer join to also see rows that do not usually meet the
join condition.
Outer join operator is the plus sign (+).

SELECT tablel.column, table2. column
FROM tablel, table2
WHERE tablel.column(+) = table2.column;

SELECT tablel.column, table2.column
FROM tablel, table2
WHERE tablel.column. = table2. column {+) ;

Returning Records with No Direct Match with Outer Joins
The missing row(s) can be returned if an outerjoin operator is used in the join
condition. The operator is a plus sign enclosed in parenthesis (+), and it is placed
on the "side" of the equality that the join rhctt a defıcient in mfürmcınun. This
operator has the effect of creating one or more mil l rows, to which one or more
rows from the nondeficient table can be joined in the syntax.

In the condition that joins (or relates) the lables together, is the outer join
symbol, which can be placed on either side of the WHERE clause condition, but
not on both sides (Place the outer join symbol following the name of the column
in the table without the matching rows.)

25

Old Usage

SELECT e.ename, e.deptno, d.dname

FROM emp e, dept d

 WHERE e.deptno(+) = d.deptno;

ENAME DEPTNO DNAME
SMITH 20 RESEARCH
ALLEN 30 SALES
WARD 30 SALES
JONES 20 RESEARCH
MARTIN 30 SALES
BLAKE 30 SALES
CLARK 10 ACCOUNTING
SCOTT 20 RESEARCH
KING 10 ACCOUNTING
TURNER 30 SALES
ADAMS 20 RESEARCH
JAMES 30 SALES
FORD 20 RESEARCH
MILLER 10 ACCOUNTING
 OPERATIONS

15 rows selected.

26

ANSI Right Outer Join Syntax

SELECT e.ename, e.deptno, d.dname

FROM emp e RIGHT OUTER JOIN dept d

 ON e.deptno = d.deptno;

ENAME DEPTNO DNAME
SMITH 20 RESEARCH
ALLEN 30 SALES
WARD 30 SALES
JONES 20 RESEARCH
MARTIN 30 SALES
BLAKE 30 SALES
CLARK 10 ACCOUNTING
SCOTT 20 RESEARCH
KING 10 ACCOUNTING
TURNER 30 SALES
ADAMS 20 RESEARCH
JAMES 30 SALES
FORD 20 RESEARCH
MILLER 10 ACCOUNTING
 OPERATIONS

15 rows selected.

27

ANSI Left Outer Join Syntax

SELECT e.ename, e.deptno, d.dname

FROM emp e RIGHT OUTER JOIN dept d

 ON e.deptno = d.deptno;

ENAME DEPTNO DNAME
SMITH 20 RESEARCH
ALLEN 30 SALES
WARD 30 SALES
JONES 20 RESEARCH
MARTIN 30 SALES
BLAKE 30 SALES
CLARK 10 ACCOUNTING
SCOTT 20 RESEARCH
KING 10 ACCOUNTING
TURNER 30 SALES
ADAMS 20 RESEARCH
JAMES 30 SALES
FORD 20 RESEARCH
MILLER 10 ACCOUNTING

14 rows selected.

28

Old usage

SELECT e.ename, e.deptno, d.dname

FROM emp e, dept d

 WHERE e.deptno = d.deptno(+);

ENAME DEPTNO DNAME
SMITH 20 RESEARCH
ALLEN 30 SALES
WARD 30 SALES
JONES 20 RESEARCH
MARTIN 30 SALES
BLAKE 30 SALES
CLARK 10 ACCOUNTING
SCOTT 20 RESEARCH
KING 10 ACCOUNTING
TURNER 30 SALES
ADAMS 20 RESEARCH
JAMES 30 SALES
FORD 20 RESEARCH
MILLER 10 ACCOUNTING

14 rows selected.

29

OUTER JOIN

Previously, we had looked at left join, or inner join, where we select rows common to the
participating tables to a join. What about the cases where we are interested in selecting
elements in a table regardless of whether they are present in the second table? We will now
need to use the SQL OUTER JOIN command.

The syntax for performing an outer join in SQL is database-dependent. For example, in
Oracle, we will place an "(+)" in the WHERE clause on the other side of the table for which
we want to include all the rows.

Let's assume that we have the following two tables,

Table Store_Information

store_name Sales Date
Los Angeles $1500 Jan-05-1999
San Diego $250 Jan-07-1999
Los Angeles $300 Jan-08-1999
Boston $700 Jan-08-1999

Table Geography

region_name store_name
East Boston
East New York
West Los Angeles
West San Diego

and we want to find out the sales amount for all of the stores. If we do a regular join, we will
not be able to get what we want because we will have missed "New York," since it does not
appear in the Store_Information table. Therefore, we need to perform an outer join on the
two tables above:

30

OUTER JOIN

SELECT A1.store_name, SUM(A2.Sales) SALES
FROM Geography A1, Store_Information A2
WHERE A1.store_name = A2.store_name (+)
GROUP BY A1.store_name

Note that in this case, we are using the Oracle syntax for outer join.

Result:

store_name SALES
Boston $700
New York
Los Angeles $1800
San Diego $250

Note: NULL is returned when there is no match on the second table. In this case, "New York"
does not appear in the table Store_Information, thus its corresponding "SALES" column is
NULL.

31

ORDER BY usage in OUTER JOIN

SELECT e.ename, d.DEPTNO, d.dname
FROM emp e, dept d
WHERE e.deptno(+) = d.deptno
ORDER BY e.deptno;

ENAME DEPTNO DNAME
ALLEN 30 SALES
WARD 30 SALES
 40 OPERATIONS

15 rows selected.

32

ANSI Syntax for OUTER JOIN

SELECT e.ename, d.DEPTNO, d.dname

FROM emp e RIGHT OUTER JOIN dept d

ON e.deptno = d.deptno

ORDER BY e.deptno;

ENAME DEPTNO DNAME
CLARK 10 ACCOUNTING
MILLER 10 ACCOUNTING
KING 10 ACCOUNTING
JONES 20 RESEARCH
SMITH 20 RESEARCH
SCOTT 20 RESEARCH
FORD 20 RESEARCH
ADAMS 20 RESEARCH
WARD 30 SALES
TURNER 30 SALES
ALLEN 30 SALES
JAMES 30 SALES
MARTIN 30 SALES
BLAKE 30 SALES
 40 OPERATIONS

15 rows selected.

33

Using Outer Joins

SELECT e.ename, d.DEPTNO, d.dname

FROM emp e, dept d

WHERE e.deptno(+) = d.deptno

ORDER BY e.deptno;

ENAME DEPTNO DNAME
MILLER 10 ACCOUNTING
KING 10 ACCOUNTING
CLARK 10 ACCOUNTING
SMITH 20 RESEARCH
FORD 20 RESEARCH
ADAMS 20 RESEARCH
SCOTT 20 RESEARCH
JONES 20 RESEARCH
TURNER 30 SALES
JAMES 30 SALES
ALLEN 30 SALES
MARTIN 30 SALES
BLAKE 30 SALES
WARD 30 SALES
 40 OPERATIONS

15 rows selected.

34

Joining a Table to Itself

SQL JOIN

Now we want to look at joins. To do joins correctly in SQL requires many of the elements we
have introduced so far. Let's assume that we have the following two tables,

Table Store_Information

store_name Sales Date
Los Angeles $1500 Jan-05-1999
San Diego $250 Jan-07-1999
Los Angeles $300 Jan-08-1999
Boston $700 Jan-08-1999

Table Geography

region_name store_name
East Boston
East New York
West Los Angeles
West San Diego

and we want to find out sales by region. We see that table Geography includes information on
regions and stores, and table Store_Information contains sales information for each store. To
get the sales information by region, we have to combine the information from the two tables.
Examining the two tables, we find that they are linked via the common field, "store_name".
We will first present the SQL statement and explain the use of each segment later:

35

Joining a Table to Itself

SELECT A1.region_name REGION, SUM(A2.Sales) SALES
FROM Geography A1, Store_Information A2
WHERE A1.store_name = A2.store_name
GROUP BY A1.region_name

Result:

REGION SALES
East $700
West $2050

The first two lines tell SQL to select two fields, the first one is the field "region_name" from
table Geography (aliased as REGION), and the second one is the sum of the field "Sales"
from table Store_Information (aliased as SALES). Notice how the table aliases are used here:
Geography is aliased as A1, and Store_Information is aliased as A2. Without the aliasing, the
first line would become

SELECT Geography.region_name REGION,

SUM(Store_Information.Sales) SALES

which is much more cumbersome. In essence, table aliases make the entire SQL statement
easier to understand, especially when multiple tables are included.

Next, we turn our attention to line 3, the WHERE statement. This is where the condition of
the join is specified. In this case, we want to make sure that the content in "store_name" in
table Geography matches that in table Store_Information, and the way to do it is to set them
equal. This WHERE statement is essential in making sure you get the correct output. Without
the correct WHERE statement, a Cartesian Join will result. Cartesian joins will result in the
query returning every possible combination of the two (or whatever the number of tables in
the FROM statement) tables. In this case, a Cartesian join would result in a total of 4 x 4 = 16
rows being returned.

36

Self Joins

MGR in the WORKER table is equal to EMPNO in the MANAGER table.

SELECT WORKER.ename, WORKER.empno ,
MANAGER.ename, MANAGER.empno
FROM emp WORKER, emp MANAGER
WHERE WORKER.mgr = MANAGER.empno ;

ENAME EMPNO ENAME EMPNO
JAMES 7900 BLAKE 7698
TURNER 7844 BLAKE 7698
MARTIN 7654 BLAKE 7698
WARD 7521 BLAKE 7698
ALLEN 7499 BLAKE 7698
FORD 7902 JONES 7566
SCOTT 7788 JONES 7566
MILLER 7934 CLARK 7782
ADAMS 7876 SCOTT 7788
CLARK 7782 KING 7839
JONES 7566 KING 7839
BLAKE 7698 KING 7839
SMITH 7369 FORD 7902

13 rows selected.

37

Self Joins

Use two alias for emp:

SELECT e.ename, e.empno , m.ename, m.empno

FROM emp e, emp m

WHERE e.mgr = m.empno ;

ENAME EMPNO ENAME EMPNO
JAMES 7900 BLAKE 7698
TURNER 7844 BLAKE 7698
MARTIN 7654 BLAKE 7698
WARD 7521 BLAKE 7698
ALLEN 7499 BLAKE 7698
FORD 7902 JONES 7566
SCOTT 7788 JONES 7566
MILLER 7934 CLARK 7782
ADAMS 7876 SCOTT 7788
CLARK 7782 KING 7839
JONES 7566 KING 7839
BLAKE 7698 KING 7839
SMITH 7369 FORD 7902

13 rows selected.

38

ANSI Syntax for SELF JOIN

SELECT e.ename, e.empno , m.ename, m.empno

FROM emp e INNER JOIN emp m

ON e.mgr = m.empno ;

ENAME EMPNO ENAME EMPNO
SMITH 7369 FORD 7902
ALLEN 7499 BLAKE 7698
WARD 7521 BLAKE 7698
JONES 7566 KING 7839
MARTIN 7654 BLAKE 7698
BLAKE 7698 KING 7839
CLARK 7782 KING 7839
SCOTT 7788 JONES 7566
TURNER 7844 BLAKE 7698
ADAMS 7876 SCOTT 7788
JAMES 7900 BLAKE 7698
FORD 7902 JONES 7566
MILLER 7934 CLARK 7782

13 rows selected.

39

SELF JOINS

SELECT worker.ename || 'works for ' || manager.ename

FROM emp worker, emp manager

WHERE worker.mgr = manager.empno;

WORKER.ENAME||'WORKSFOR'||MANAGER.ENAME
SMITHworks for FORD
ALLENworks for BLAKE
WARDworks for BLAKE
JONESworks for KING
MARTINworks for BLAKE
BLAKEworks for KING
CLARKworks for KING
SCOTTworks for JONES
TURNERworks for BLAKE
ADAMSworks for SCOTT
JAMESworks for BLAKE
FORDworks for JONES
MILLERworks for CLARK

13 rows selected.

Joining a Table to Itself (continued)

The slide example joins the EMP table to itself. To simulate two tables in the
FROM clause, there are two aliases, namely WORKER and MANAGER, for
the same table EMP.

In this example, the WHERE clause contains the join that means ''where a
worker's manager number matches the employee number for the manager.

40

ANSI syntax for SELF JOINS

SELECT worker.ename || 'works for ' || manager.ename

FROM emp worker INNER JOIN emp manager

ON worker.mgr = manager.empno;

WORKER.ENAME||'WORKSFOR'||MANAGER.ENAME
SMITHworks for FORD
ALLENworks for BLAKE
WARDworks for BLAKE
JONESworks for KING
MARTINworks for BLAKE
BLAKEworks for KING
CLARKworks for KING
SCOTTworks for JONES
TURNERworks for BLAKE
ADAMSworks for SCOTT
JAMESworks for BLAKE
FORDworks for JONES
MILLERworks for CLARK

13 rows selected.

41

Self Joins

SELECT e.ename, e.empno , m.ename, m.empno
FROM emp e, emp m
WHERE e.mgr = m.empno;

ENAME EMPNO ENAME EMPNO
JAMES 7900 BLAKE 7698
TURNER 7844 BLAKE 7698

13 rows selected.

Joining a Table to Itself

Sometimes you need to join a table to itself. To find the name of each
employee's manager, you need to join the EMP table to itself, or perform a self
join. For example, to find the name of Blake's manager, you need to:

• Find Blake in the EMP table by looking at the ENAME column.
• Find the manager number for Blake by looking at the MGR column.

Blake's manager number is 7839.
• Find the name of the manager with EMPNO 7839 by looking at the

ENAME column. King's employee number is 7839, so King is Blake's
manager.

In this process, you look in the table twice. The first time you look in the table to
find Blake in the ENAME column and MGR value of 7839. The second time you
look in the EMPNO column to find 7839 and the ENAME column to find King

ANSI Syntax for Self Join
SELECT e.ename, e.empno , m.ename, m.empno
FROM emp e INNER JOIN emp m
ON e.mgr = m.empno;

42

Summary

SELECT tablel. Column , table2. column
FROM tablel , table2
WHERE tablel. columnl = table2. column2;

• Equijoin
• Non-equijoin
• Outer join
• Self join

Summary

There are multiple ways to join tables. The common thread, though, is that you
want to link them through a condition in the WHERE clause. The method you
choose will be based on the required result and the data structures that you are
using.

43

Exercices

Solution 1
SELECT e.ename, e.deptno, d.dname
FROM emp e , dept d
WHERE e.deptno = d.deptno ;

Solution 2
SELECT e.job, d.loc
FROM emp e , dept d
WHERE e.deptno = d.deptno
AND e.deptno = 30;

Solution 3
SELECT e.ename, d.dname, d.loc
FROM emp e , dept d
WHERE comm IS NOT NULL
AND e.deptno = d.deptno ;

Solution 4
SELECT e.ename, d.dname, d.loc
FROM emp e , dept d
WHERE comm IS NOT NULL
AND e.deptno = d.deptno ;

Solution 5
SELECT e.ename, e.job, e.deptno, d.dname
FROM emp e, dept d
WHERE e.deptno = d.deptno
AND
d.loc = 'DALLAS' ;

Solution 6
SELECT e.ename "İşçi" , e.empno "İşçi No" ,
 m.ename "Manager" , m.empno "Mgr No"
FROM emp e, emp m
WHERE e.mgr = m.empno ;

Solution 7
SELECT e.ename "İşçi" , e.empno "İşçi No" ,
 m.ename "Manager" , m.empno "Mgr No"
FROM emp e, emp m
WHERE e.mgr = m.empno(+) ;

44

Solution 8a
SELECT e.deptno "Bölüm" , e.ename "İşçi" ,
 b.ename
FROM emp e , emp b
WHERE e.deptno = b.deptno
ORDER BY e.empno ;

Solution 8b
SELECT e.deptno "Bölüm" , e.ename "İşçi" ,
 b.ename
FROM emp e , emp b
WHERE e.deptno = b.deptno
 AND e.ename != b.ename
ORDER BY e.empno ;

Solution 8c
SELECT e.deptno "Bölüm" , e.ename "İşçi" , b.ename
FROM emp e , emp b
WHERE e.deptno = b.deptno
AND e.ename <> b.ename
ORDER BY e.deptno ;

Solution 9a
DESC salgrade;

Solution 9b
SELECT e.ename "İşçi" , e.job "İşi" , d.dname "Bölümü" ,
 e.sal "Maaş" , s.grade "Barem"
FROM emp e, dept d , salgrade s
WHERE
 e.deptno = d.deptno
 AND e.sal BETWEEN s.losal AND s.hisal ;

Solution 10
SELECT e.ename "İşçi" , e.hiredate "İşe Giriş Tarihi" , b.hiredate "Blake"
FROM emp e, emp b
WHERE
 e.hiredate > b.hiredate
 AND b.ename = 'BLAKE' ;

Solution 11
SELECT e.ename "İşçi" , e.hiredate "İşe Giriş Tarihi" , m.ename "Manageri" ,
m.hiredate "Managerin Giriş Tar"
FROM emp e, emp m
WHERE
 e.hiredate < m.hiredate
 AND e.mgr = m.empno ;

45

	Outer joins

