
 1

Date / Time Arithmetic with Oracle

If you store date and time information in Oracle, you have two different

options for the column's datatype - DATE and TIMESTAMP.

DATE is the datatype that we are all familiar with when we think about

representing date and time values. It has the ability to store the month, day,

year, century, hours, minutes, and seconds. It is typically good for

representing data for when something has happened or should happen in the

future. The problem with the DATE datatype is its' granularity when

trying to determine a time interval between two events when the events

happen within a second of each other. This issue is solved with the

TIMESTAMP datatype.

In order to represent the date stored in a more readable format, the TO_CHAR

function has traditionally been wrapped around the date:

SELECT TO_CHAR(hiredate,'DD.MM.YYYY:HH24:MI:SS') "hiredate"

 FROM emp;

hiredate

17.12.1980:00:00:00

20.02.1981:00:00:00

 ...

14 rows selected.

 2

Working with Dates

• Oracle stores dates in an internal numeric format representing the

century, year, month, day, hours, minutes, seconds.

• The default date format is DD-MON-YY.

• SYSDATE is a function returning date and time.

• DUAL is a dummy table used to view SYSDATE.

Oracle Date Format

The default display and input format for any date is DD-MON-YY. Valid

Oracle dates are behween Januar 1, 4712 B C. , and December 31, 9994 A.D.

SYSDATE

SYSDATE is a date function that returns the current date and time. You can

use SYSDATE just as you would use any other column name. For example,

you can display the current date by selecting SYSDATE from a table. It is

customary to select SYSDATE from a dummy table called DUAL .

DUAL

The DUAL table is owned by the user SYS and can be accessed by users. It

contains one column, DUMMY, and one row with the value X. The DUAL

table is useful when you want to return a value once only — for instance, the

value of a constant, pseudocolumn, or expression that is not derived from a

table with user data.

Example

SELECT sysdate

FROM dual;

SYSDATE

18/03/2007

 3

Date Functions

The Built-In Date Functions

+ame Description

ADD_MONTHS Adds the specified number of months to a date.

LAST_DAY Returns the last day in the month of the specified date.

MONTHS_

BETWEEN

Calculates the number of months between two dates.

NEW_TIME Returns the date/time value, with the time shifted as requested by the

specified time zones.

NEXT_DAY Returns the date of the first weekday specified that is later than the

date.

ROUND Returns the date rounded by the specified format unit.

SYSDATE Returns the current date and time in the Oracle Server.

TRUNC Truncates the specified date of its time portion according to the

format unit provided.

 4

Arithmetic with Dates

• Add or subtract a number to or from a date for a resultant date value,

• Subtract two dates to find the numberof days between those dates.

• Add hours to a date by dividing the number of hours by 24.

Arithmetic with Dates

Since the database stores dates as numbers, you can perform calculations using

arithmetic operators such as addition and subtraction. You can add and subtract

number constants as well as dates.

You can perform the following operations:

Operation Result Description

Date + number Date Adds a number of days to a date

Date - number Date Subtracts a number of days from a date

Date – date Number

of days

Subracts one date from another

Date +

number/24

Date Adds a number of hours to a date

 5

Addition and Subtraction of Dates

You can add and subtract number constants as well as other dates from dates.

Oracle interprets number constants in arithmetic date expressions as numbers of

days. For example:

• SYSDATE + 1 is tomorrow

• SYSDATE - 7 is one week ago

• SYSDATE + (10/1440) is ten minutes from now.

Subtracting the HIREDATE column of the EMP table from SYSDATE returns

the number of days since each employee was hired.

SELECT '03.12.2004:10:34:24' "Now",

 TO_CHAR(hiredate,'DD.MM.YYYY:HH24:MI:SS') "Hiredate",

 TO_DATE('03.12.2004:10:34:24','DD.MM.YYYY:HH24:MI:SS')

 - hiredate "Hired since [Days]"

FROM emp;

+ow Hiredate Hired since [Days]

03.12.2004:10:34:24 17.12.1980:00:00:00 8752,44056

03.12.2004:10:34:24 20.02.1981:00:00:00 8687,44056

 ...

14 rows selected.

Note:

You cannot multiply or divide DATE values. Oracle provides functions

for many common date operations.

SELECT '13.02.2007:10:34:24' ".imdi",

 TO_DATE('13.02.2007:10:34:24','DD.MM.YYYY:HH24:MI:SS')
- TO_DATE('28/11/1942:10:17:36' , 'DD/MM/YYYY:HH24:MI:SS')

FROM dual;

Şimdi
TO_DATE('13.02.2007:10:34:24','DD.MM.YYYY:HH24:MI:SS')-

TO_DATE('28/11/1942:10:17:36','DD/MM/YYYY:HH24:MI:SS')

13.02.2007:10:34:24 23453,0117

 6

Using Arithmetic Operators with Dates

SELECT ename, (SYSDATE - hiredate) / 7 WEEKS

FROM emp

WHERE deptno = 10;

E+AME WEEKS

CLARK 1344,86479

KING 1321,86479

MILLER 1312,29336

Arithmetic with Dates (continued)

The example on the slide displays the name and the number of wecks employed

for all employees in department 10. It subtracts the current date (SYSDATE)

from the date on which the employee was hired and divides the result by 7 to

calculate the number of weeks that a worker has been employed.

Note: SYSDATE is a SQL function that returns the current date and time. Your

results may differ from the example.

 7

Using Date Functions

MONTHS_BETWEEN ('01-SEP-95', '11–JAN–94‘) 19.6774194

ADD_MONTHS ('11-JAN-94',6) '11-JUL-94’

NEXT_DAY ('01-SEP-95’ , ‘FRIDAY') '08-SEP-95’

LAST_DAY('01-SEP-95') ’30-SEP-95’

 8

Date Functions (continued)

For all employees employed for fewer than 200 months, display the

employee number, hiredate, number of months employed, six-month review

date, fırst Friday after hiredate, and last day of the month when hired.

SELECT empno, hiredate,

 MONTHS_BETWEEN(SYSDATE, hiredate) TENURE,

 ADD_MONTHS(hiredate, 6) REVIEW,

 NEXT_DAY(hiredate, 'CUMA') CUMA ,

 LAST_DAY(hiredate) Giriş

FROM emp

WHERE MONTHS_BETWEEN (SYSDATE, hiredate) > 310;

EMP+O HIREDATE TE+URE REVIEW CUMA GIRIŞ

7369 17/12/1980 315,065473 17/06/1981 19/12/1980 31/12/1980

7499 20/02/1981 312,968698 20/08/1981 27/02/1981 28/02/1981

7521 22/02/1981 312,904182 22/08/1981 27/02/1981 28/02/1981

7566 02/04/1981 311,549344 02/10/1981 03/04/1981 30/04/1981

7698 01/05/1981 310,581602 01/11/1981 08/05/1981 31/05/1981

 9

ADD_MONTHS

Move ahead date by three months:

ADD_MONTHS ('12-JAN-1995', 3) ==> 12-APR-1995

Specify negative number of months in first position:

ADD_MONTHS (-12, '12-MAR-1990') ==> 12-MAR-1989

 10

ADD_MONTHS

ADD_MONTHS always shifts the date by whole months. You can provide

a fractional value for the month_shift parameter, but ADD_MONTHS will

always round down to the whole number nearest zero, as shown in these

examples:

ADD_MONTHS ('28-FEB-1989', 1.5) same as
ADD_MONTHS ('28-FEB-1989', 1) ==> 31-MAR-1989

ADD_MONTHS ('28-FEB-1989', 1.9999) same as
ADD_MONTHS ('28-FEB-1989', 1) ==> 31-MAR-1989

ADD_MONTHS ('28-FEB-1989', -1.9999) same as
ADD_MONTHS ('28-FEB-1989', -1) ==> 31-JAN-1989

ADD_MONTHS ('28-FEB-1989', .5) same as
ADD_MONTHS ('28-FEB-1989', 0) ==> 28-FEB-1989

 11

The LAST_DAY function

The LAST_DAY function returns the date of the last day of the month for a

given date. The specification is:

FUNCTION LAST_DAY (date_in IN DATE) RETURN DATE

This function is useful because the number of days in a month varies

throughout the year. With LAST_DAY, for example, you do not have to try to

figure out if February of this or that year has 28 or 29 days. Just let

LAST_DAY figure it out for you.

Here are some examples of LAST_DAY:

• Go to the last day in the month:

LAST_DAY ('12-JAN-99') ==> 31-JAN-1999

• If already on the last day, just stay on that day:

LAST_DAY ('31-JAN-99') ==> 31-JAN-1999

• Get the last day of the month three months after being hired:

LAST_DAY (ADD_MONTHS (hiredate, 3))

• Tell me the number of days until the end of the month:

LAST_DAY (SYSDATE) - SYSDATE

 12

LAST_DAY (date)

LAST_DAY returns the date of the last day of the month that contains date.

The return type is always DATE, regardless of the datatype of date.

Example

The following statement determines how many days are left in the current

month:

SELECT SYSDATE,

 LAST_DAY(SYSDATE) "Last",

 LAST_DAY(SYSDATE) - SYSDATE "Days Left"

 FROM DUAL;

SYSDATE Last Days Left

19/03/2007 31/03/2007 12

Get the last date of a month:

SELECT LAST_DAY (TO_DATE ('02','MM'))

FROM dual;

LAST_DAY(T

28/02/2007

 13

+EXT_DAY (date, day)

NEXT_DAY returns the date of the first weekday named by day that is later

than date. The return type is always DATE, regardless of the datatype of date.

The argument day must be a day of the week in the date language of your

session, either the full name or the abbreviation. The minimum number of

letters required is the number of letters in the abbreviated version. Any

characters immediately following the valid abbreviation are ignored. The

return value has the same hours, minutes, and seconds component as the

argument date.

Example

Return the date of the next Monday after now:

SELECT TO_CHAR (NEXT_DAY (sysdate, 'PAZARTESĐ') ,
'DD.MM.YYYY')

"Next Monday from now"

FROM DUAL;

+ext Monday from now

19.03.2007

 14

MO+THS_BETWEE+ function

The MONTHS_BETWEEN function calculates the number of months

between two dates and returns that difference as a number. The specification

is:

MONTHS_BETWEEN (date1, date2)

It returns a number calculated as the number of months
between date1 and date2.

The following rules apply to MONTHS_BETWEEN:

• If date1 comes after date2, then MONTHS_BETWEEN returns a

positive number.

• If date1 comes before date2, then MONTHS_BETWEEN returns a

negative number.

• If date1 and date2 are in the same month, then MONTHS_BETWEEN

returns a fraction (a value between -1 and +1).

• If date1 and date2 both fall on the last day of their respective months,

then MONTHS_BETWEEN returns a whole number (no fractional

component).

• If date1 and date2 are in different months and at least one of the dates is

not a last day in the month, MONTHS_BETWEEN returns a fractional

number. The fractional component is calculated on a 31-day month

basis and also takes into account any differences in the time component

of date1 and date2.

 15

MO+THS_BETWEE+ (continued)

Here are some examples of the uses of MONTHS_BETWEEN:

• Calculate two ends of month, the first earlier than the second:

MONTHS_BETWEEN ('31-JAN-1994', '28-FEB-1994')
==> -1

• Calculate two ends of month, the first later than the second:

MONTHS_BETWEEN ('31-MAR-1995', '28-FEB-1994')
==> 13

• Calculate when both dates fall in the same month:

MONTHS_BETWEEN ('28-FEB-1994', '15-FEB-1994')
==> 0

• Perform months_between calculations with a fractional component:

• MONTHS_BETWEEN ('31-JAN-1994', '1-MAR-1994')
==> -1.0322581

• MONTHS_BETWEEN ('31-JAN-1994', '2-MAR-1994')
==> -1.0645161
MONTHS_BETWEEN ('31-JAN-1994', '10-MAR-1994')
==> -1.3225806

If you detect a pattern here you are right. As I said, MONTHS_BETWEEN

calculates the fractional component of the number of months by assuming that

each month has 31 days. Therefore, each additional day over a complete

month counts for 1/31 of a month, and:

1 divided by 31 = .032258065--more or less!

According to this rule, the number of months between January 31, 1994 and

February 28, 1994 is one -- a nice, clean integer. But to calculate the number

of months between January 31, 1994 and March 1, 1994, I have to add an

additional .032258065 to the difference (and make that additional number

negative because in this case MONTHS_BETWEEN counts from the first

date back to the second date.

 16

The ROUND function

The ROUND function rounds a date value to the nearest date as specified by a

format mask. It is just like the standard numeric ROUND function, which

rounds a number to the nearest number of specified precision, except that it

works with dates. The specification for ROUND is as follows:

ROUND (date [, format_mask VARCHAR2])

It returns a date.

The ROUND function always rounds the time component of a date to

midnight (12:00 A.M.). The format mask is optional. If you do not include a

format mask, ROUND rounds the date to the nearest day. In other words, it

checks the time component of the date. If the time is past noon, then ROUND

returns the next day with a time component of midnight.

Examples

Round up to the next century:

TO_CHAR (ROUND (TO_DATE ('01-MAR-1994'), 'CC'),
'DD-MON-YYYY')

01-JAN-2000

Round back to the beginning of the current century:

TO_CHAR (ROUND (TO_DATE ('01-MAR-1945'), 'CC'),
'DD-MON-YYYY')

01-JAN-1900

Round down and up to the first of the year:

ROUND (TO_DATE ('01-MAR-1994'), 'YYYY')
� 01-JAN-1994

ROUND (TO_DATE ('01-SEP-1994'), 'YEAR')
==> 01-JAN-1995

Round up and down to the quarter (first date in the quarter):

ROUND (TO_DATE ('01-MAR-1994'), 'Q')
� 01-APR-1994

 17

ROUND (TO_DATE ('15-APR-1994'), 'Q')
==> 01-APR-1994

Round down and up to the first of the month:

ROUND (TO_DATE ('12-MAR-1994'), 'MONTH')
� 01-MAR-1994

ROUND (TO_DATE ('17-MAR-1994'), 'MM')
==> 01-APR-1994

Day of first of year is Saturday:

TO_CHAR (TO_DATE ('01-JAN-1994'), 'DAY')
==> 'SATURDAY'

So round to date of nearest Saturday for `01-MAR-1994':

ROUND (TO_DATE ('01-MAR-1994'), 'WW')
==> 26-FEB-1994

First day in the month is a Friday:

TO_CHAR (TO_DATE ('01-APR-1994'), 'DAY')
==> FRIDAY

So round to date of nearest Friday from April 16, 1994:

TO_CHAR ('16-APR-1994'), 'DAY')
� SATURDAY

�
ROUND (TO_DATE ('16-APR-1994'), 'W')
� 15-APR-1994

�
TO_CHAR (ROUND (TO_DATE ('16-APR-1994'), 'W'),
'DAY')
==> FRIDAY

 18

In the rest of the examples I use TO_DATE in order to pass a time

component to the ROUND function, and TO_CHAR to display the new

time.

Round back to nearest day (time always midnight):

TO_CHAR (ROUND (TO_DATE ('11-SEP-1994 10:00 AM',
 'DD-MON-YY HH:MI AM'), 'DD'),
 'DD-MON-YY HH:MI AM')

11-SEP-1994 12:00 AM

Round forward to the nearest day:

TO_CHAR (ROUND (TO_DATE ('11-SEP-1994 4:00 PM',
 'DD-MON-YY HH:MI AM'), 'DD'),
 'DD-MON-YY HH:MI AM')

12-SEP-1994 12:00 AM

Round back to the nearest hour:

TO_CHAR (ROUND (TO_DATE ('11-SEP-1994 4:17 PM',
 'DD-MON-YY HH:MI AM'), 'HH'),
 'DD-MON-YY HH:MI AM')
==> 11-SEP-1994 04:00 PM

 19

The TRUNC function

The TRUNC function truncates date values according to the specified format

mask. The specification for TRUNC is:

TRUNC (date [, format_mask VARCHAR2])

It returns a date.

The TRUNC date function is similar to the numeric FLOOR function.

Here are some examples of TRUNC for dates (all assuming a default date format mask of

DD-MON-YYYY):

Without a format mask, TRUNC sets the time to 12:00 A.M. of the same day:

TO_CHAR (TRUNC (TO_DATE ('11-SEP-1994 9:36 AM', 'DD-
MON-YYYY HH:MI AM'))
11-SEP-1994 12:00 AM

Trunc to the beginning of the century in all cases:

TO_CHAR (TRUNC (TO_DATE ('01-MAR-1994'), 'CC'), 'DD-
MON-YYYY')
==> 01-JAN-1900

TO_CHAR (TRUNC (TO_DATE ('01-MAR-1945'), 'CC'), 'DD-
MON-YYYY')
01-JAN-1900

Trunc to the first of the current year:

TRUNC (TO_DATE ('01-MAR-1994'), 'YYYY')
� 01-JAN-1994

TRUNC (TO_DATE ('01-SEP-1994'), 'YEAR')
==> 01-JAN-1994

Trunc to the first day of the quarter:

TRUNC (TO_DATE ('01-MAR-1994'), 'Q')

� 01-JAN-1994

 20

TRUNC (TO_DATE ('15-APR-1994'), 'Q')
==> 01-APR-1994

Trunc to the first of the month:

TRUNC (TO_DATE ('12-MAR-1994'), 'MONTH')
� 01-MAR-1994

TRUNC (TO_DATE ('17-MAR-1994'), 'MM')
==> 01-APR-1994

In the rest of the examples I use TO_DATE to pass a time component to the

TRUNC function, and TO_CHAR to display the new time:

Trunc back to the beginning of the current day (time is always midnight):

TO_CHAR (TRUNC (TO_DATE ('11-SEP-1994 10:00 AM',
 'DD-MON-YYYY HH:MI AM'), 'DD'),
 'DD-MON-YYYY HH:MI AM')
==> 11-SEP-1994 12:00 AM

TO_CHAR (TRUNC (TO_DATE ('11-SEP-1994 4:00 PM',
 'DD-MON-YYYY HH:MI AM'), 'DD'),
 'DD-MON-YYYY HH:MI AM')
11-SEP-1994 12:00 AM

Trunc to the beginning of the current hour:

TO_CHAR (TRUNC (TO_DATE ('11-SEP-1994 4:17 PM',
 'DD-MON-YYYY HH:MI AM'), 'HH'),
 'DD-MON-YYYY HH:MI AM')
11-SEP-1994 04:00 PM

 21

New_Time Function

In Oracle/PLSQL, the new_time function returns a date in time zone1 to a

date in time zone2.

The syntax for the new_time function is:

new_time(date, zone1, zone2)

zone1 and zone2 can be any of the following values:

Value Description

AST Atlantic Standard Time

ADT Atlantic Daylight Time

BST Bering Standard Time

BDT Bering Daylight Time

CST Central Standard Time

CDT Central Daylight Time

EST Eastern Standard Time

EDT Eastern Daylight Time

GMT Greenwich Mean Time

HST Alaska-Hawaii Standard Time

HDT Alaska-Hawaii Daylight Time

MST Mountain Standard Time

MDT Mountain Daylight Time

NST Newfoundland Standard Time

PST Pacific Standard Time

PDT Pacific Daylight Time

YST Yukon Standard Time

YDT Yukon Daylight Time

 22

+EW_TIME FU+CTIO+

SELECT new_time('17-03-2007' , 'GMT ', 'EST ')

FROM dual;

+EW_TIME('

16/03/2007

SELECT new_time (to_date ('2003/11/01 01:45',
'yyyy/mm/dd HH24:MI'), 'AST', 'MST')

FROM dual;

+EW_TIME(T

31/10/2003

