
LECTURE 9 

POINT ESTIMATION METHODS 



STATISTICAL INFERENCE 

• Determining certain unknown properties of a 
probability distribution on the basis of a sample 
(usually, a r.s.) obtained from that distribution 

Point Estimation: 

Interval Estimation: 

Hypothesis Testing: 
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• Parameter Space ( or     ): The set of all possible 
values of an unknown parameter, ; . 

• Statistic: A function of rvs (usually a sample rvs in an 
estimation) which does not contain any unknown 
parameters. 
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•  Estimator of an unknown parameter : A statistic        
used for estimating . 
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POINT ESTIMATION 

• We have a sample x = (x1 , … , xn ) from a population 

• The population contains an unknown parameter  

• The functional forms of the distributional functions 

may be known or unknown, but  they depend on the 

unknown  . 

• Denote generally by  f(x ;  ) the probability density or 

mass function of the distribution 

• A point estimate of  is a function of the sample values  

 

such that its values should be close to the unknown . 
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• The sample mean        is a point estimate of the population 
mean    

 
 
• The sample variance  s2 is a point estimate of the 

population variance  2  
 
 
 

• The sample proportion p of a specific event (a specific 
value or range of values) is a point estimate of the 
corresponding population proportion  

STANDARD POINT ESTIMATES 
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POINT ESTIMATION METHODS 

• It is often the case that we are interested in finding 
values of some parameters of the system. Then we 
design an experiment and get some observations 
(x1,…,xn). We want to use these observations and 
estimate the parameters of the system. 

• The result of the estimation is a function of 
observation T(x1,…,xn). A function of the observations 
is called statistic. It is a random variable and in many 
cases we want to find its distribution also. 

• Maximum Likelihood Method and Method of 
Moments are most popular techniques to estimate 
parameters using observations or experimental data. 



MAXIMUM LIKELIHOOD ESTIMATION (MLE) 
METHOD 

 MLE is a method of fitting statistical models to observed 
data. Let us assume that we know that our random 
sample points came from a population with the 
distribution with parameter(s) - . We do not know . If 
we would know it, then we could write the probability 
distribution of a single observation f(x|). Here f(x|) is 
the conditional distribution of the observed random 
variable if the parameter(s) would be known. If we 
observe n independent sample points from the same 
population then the joint conditional probability 
distribution of all observations can be written: 
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 We could write the product of the individual 
probability distributions because the observations 
are independent. 

 We could interpret f(x1,x2,…,xn|) as the probability 
of observing given sample points if we would know 
the parameter . If we would vary the parameter(s) 
we would get different values for the probability f. 
Since f is the probability distribution, parameters 
are fixed and observation varies. For a given set of 
observations we define likelihood proportional to 
the conditional probability distribution. 
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 When we talk about conditional probability distribution of the 
observations given parameter(s) then we assume that 
parameters are fixed and observations vary. When we talk about 
likelihood then observations are fixed parameters vary. That is 
the major difference between likelihood and conditional 
probability distribution. Sometimes to emphasize that 
parameters vary and observations are fixed, likelihood is written 
as: 

 

 Principle of maximum likelihood states that the best parameters 
are those that maximize probability of observing current values 
of the observations. Maximum likelihood chooses parameters 
that satisfy: 
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Purpose of the maximum likelihood is to maximize the likelihood 

function and estimate parameters. If the derivatives of the likelihood 

function exist then it can be done using: 
 

 

Solution of this equation will give possible values for maximum 

likelihood estimator.  

Usually instead of likelihood its logarithm is maximized. Since log is 

strictly monotonically increasing function, derivative of the likelihood 

and derivative of the log of likelihood will have exactly same roots. If 

we use the fact that observations are independent then the joint 

probability distributions of all observations is equal to the product of 

the individual probabilities.  
 

 

Usually working with sums is easier than working with products. 
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Example 
 Let us assume that we carry out a Beurnoulli experiment. Possible outcomes of 

the trials are success or failure. Probability of success is  and probability of 
failure is 1- . We do not know the value of . Let us assume we have n trials and 
k of them are successes and n-k of them are failures. Values of random variables 
in our trials can be either 0 (failure) or 1 (success). Let us denote observations as 
y=(y1,y2,…,yn). Probability of the observation yi at the ith trial is: 

 Since individual trials are independent we can write for n trials: 

 

 

 log of this function is: 

 

 Equating the first derivative of the likelihood w.r.t unknown parameter to zero 
we get: 

 

 

 

 The ML estimator for the parameter is equal to the fraction of successes. 
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Example 
 Let us assume that the sample points came from the population 

with normal distribution with unknown mean and variance. Let 
us assume that we have n observations, y=(y1,y2,…,yn). We want 
to estimate the population mean and variance. Then log 
likelihood function will have the form: 

 

 

 If we get derivative of this function w.r.t mean value and variance 
then we can write: 
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ADVANTAGES OF MLE 

• Often yields good estimates, especially for large 
sample size. 

• Asymptotic distribution of MLE is Normal. 

• Most widely used estimation technique. 

• Usually they are consistent estimators. [will define 
consistency later] 

 



DISADVANTAGES OF MLE 

• Requires that the pdf or pmf is known except the 
value of parameters. 

• MLE may not exist or may not be unique. 

• MLE may not be obtained explicitly (numerical or 
search methods may be required.). It is sensitive to 
the choice of starting values when using numerical 
estimation.   

• MLEs can be heavily biased for small samples.  



METHOD OF MOMENTS ESTIMATION 
(MME) 

• Let X1, X2,…,Xn be a r.s. from a population with pmf or 
pdf f(x;1, 2,…, k). The MMEs are found by equating 
the first k population moments to corresponding 
sample moments and solving the resulting system of 
equations. 

Sample Moments Population Moments 
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Example 

• Suppose you have 10 data about x 

 0.3, 4, 5, 1, 1.3, 6.5, 0.85, 2.5, 4.56, 3.14 

 

 

 

 

• After calculation, mean = 2.915, var = 4.2981 
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• Suppose we want to fit with uniform, 

 

 

• Now  

 

 

 

• Solving,  

 b = 6.5142, a = -0.684 
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METHOD OF MOMENTS ESTIMATION 
(MME) 
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so on… 

Continue this until there are enough equations to 
solve for the unknown parameters. 



DRAWBACKS OF MMES 

• Although sometimes parameters are positive 
valued, MMEs can be negative. 

 

• If moments does not exist, we cannot find 
MMEs. 


