LECTURE 8

SAMPLING DISTRIBUTION

INFERENCE

- In real life calculating parameters of populations is usually impossible because populations are very large. Rather than investigating the whole population, we take a sample, calculate a statistic related to the parameter of interest, and make an inference.
- Inferential statistics allow the researcher to come to conclusions about a population on the basis of descriptive statistics about a sample.

INFERENCE WITH A SINGLE OBSERVATION

- Each observation X_{i} in a random sample is a representative of unobserved variables in population
- How different would this observation be if we took a different random sample?

STATISTIC

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a r.s. of size n from a population and let $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function which does not depend on any unknown parameters. Then, the r.v. or a random vector $Y=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is called a statistic.
- The sample mean is the arithmetic average of the values in a r.s.

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- The sample variance is the statistic defined by

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}-\bar{X}^{2}
$$

- The sample standard deviation is the statistic defined by S.

SAMPLING DISTRIBUTION

- A statistic is also a random variable. Its distribution depends on the distribution of the random sample and the form of the function $Y=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- The probability distribution of a statistic Y is called the sampling distribution of Y.
- A sampling distribution is a distribution of a statistic over all possible samples.
- To get a sampling distribution,

1. Take a sample of size N (a given number like 5,10 , or 1000) from a population
2. Compute the statistic (e.g., the mean) and record it.
3. Repeat 1 and 2 a lot (infinitely for large pops).
4. Plot the resulting sampling distribution, a distribution of a statistic over repeated samples.

The method we will employ on the rules of probability and the laws of expected value and variance to derive the sampling distribution.

Example: Inference with Sample Mean

- Sample mean is our estimate of population mean
- How much would the sample mean change if we took a different sample?
- Key to this question: Sampling Distribution of \bar{x}

SAMPLING DISTRIBUTION OF SAMPLE MEAN

- Model assumption: our observations x_{i} are sampled from a population with mean μ and variance σ^{2}

Example

- A fair die is thrown infinitely many times, with the random variable $X=\#$ of spots on any throw.

\mathbf{x}	1	2	3	4	5	6
$\mathbf{P}(\mathbf{x})$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

- The probability distribution of X is:

$$
\mu=\sum x P(x)=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+\ldots+6\left(\frac{1}{6}\right)=3.5
$$

...and the mean and variance are calculated as well:

$$
\begin{aligned}
& \sigma^{2}=\sum(x-\mu)^{2} P(x)=(1-3.5)^{2}\left(\frac{1}{6}\right)+\ldots+(6-3.5)^{2}\left(\frac{1}{6}\right)=2.92 \\
& \sigma=\sqrt{\sigma^{2}}=\sqrt{2.92}=1.71
\end{aligned}
$$

- A sampling distribution is created by looking at all samples of size $\mathrm{n}=2$ (i.e. two dice) and their means...

Sample	\bar{x}	Sample	\bar{x}	Sample	\bar{x}
1,1	1.0	3,1	2.0	5,1	3.0
1,2	1.5	3,2	2.5	5,2	3.5
1,3	2.0	3,3	3.0	5,3	4.0
1,4	2.5	3,4	3.5	5,4	4.5
1,5	3.0	3,5	4.0	5,5	5.0
1,6	3.5	3,6	4.5	5,6	5.5
2,1	1.5	4,1	2.5	6,1	3.5
2,2	2.0	4,2	3.0	6,2	4.0
2,3	2.5	4,3	3.5	6,3	4.5
2,4	3.0	4,4	4.0	6,4	5.0
2,5	3.5	4,5	4.5	6,5	5.5
2,6	4.0	4,6	5.0	6,6	6.0

- While there are 36 possible samples of size 2 , there are only 11 values for , and some (e.g. =3.5) occur more frequently than others (e.g. =1).
- The sampling distribution of \bar{x} is shown below:

$$
\begin{aligned}
\mu_{\bar{x}} & =\sum \bar{x} P(\bar{x})=1.0\left(\frac{1}{36}\right)+1.5\left(\frac{2}{36}\right)+\ldots+6.0\left(\frac{1}{36}\right)=3.5 \quad \bar{X} \\
\sigma_{\bar{x}}^{2} & =\sum\left(\bar{x}-\mu_{\bar{x}}\right)^{2} P(\bar{x})=(1.0-3.5)^{2}\left(\frac{1}{36}\right)+\ldots+(6.0-3.5)^{2}\left(\frac{1}{36}\right)=1.46 \\
\sigma_{\bar{x}} & =\sqrt{\sigma_{\bar{x}}^{2}}=\sqrt{1.46}=1.21
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{n}=5 & \mathrm{n}=10 & \mathrm{n}=25 \\
\mu_{\overline{\mathrm{x}}}=3.5 & \mu_{\overline{\mathrm{x}}}=3.5 & \mu_{\overline{\mathrm{x}}}=3.5 \\
\sigma_{\overline{\mathrm{x}}}^{2}=.5833\left(=\frac{\sigma_{\mathrm{x}}^{2}}{5}\right) & \sigma_{\overline{\mathrm{x}}}^{2}=.2917\left(=\frac{\sigma_{\mathrm{x}}^{2}}{10}\right) & \sigma_{\overline{\mathrm{x}}}^{2}=.1167\left(=\frac{\sigma_{x}^{2}}{25}\right)
\end{array}
$$

Notice that $\sigma_{\bar{x}}^{2}$ is smaller than $\mathrm{s}_{\mathrm{x}}^{2}$.
The larger the sample size the smaller $\sigma_{\bar{x}}^{2}$. Therefore, \bar{X} tends to fall closer to m, as the sample size increases.

Generalize...

- We can generalize the mean and variance of the sampling of two dice:

$$
\begin{aligned}
& \mu_{\bar{x}}=\mu \\
& \sigma_{\bar{x}}^{2}=\sigma^{2} / 2
\end{aligned}
$$

- ...to n-dice:

$$
\begin{aligned}
& \mu_{\bar{x}}=\mu \\
& \sigma_{\bar{x}}^{2}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

The standard deviation of the sampling distribution is called the standard error:

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

LAW OF LARGE NUMBERS AND CENTRAL LIMIT THEOREM

Both are asymptotic results about the sample mean:

- Law of Large Numbers (LLN) says that as $n \rightarrow \infty$, the sample mean converges to the population mean, i.e.,

$$
\text { as } \mathrm{n} \rightarrow \infty, \bar{X}-\mu \rightarrow 0
$$

- Central Limit Theorem (CLT) says that as $\mathrm{n} \rightarrow \infty$, also the distribution converges to Normal, i.e.,

$$
\text { as } \mathrm{n} \rightarrow \infty, \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { converges to } \mathrm{N}(0,1)
$$

- If a population is normally distributed with mean $\boldsymbol{\mu}$ and standard deviation σ, the sampling distribution of \bar{X} is also normally distributed with

$$
\mu_{\bar{x}}=\mu \quad \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

- Z-value for the sampling distribution of \bar{X} is calculated:

$$
\begin{aligned}
Z= & \frac{\left(\bar{X}-\mu_{\bar{x}}\right)}{\sigma_{\bar{x}}}=\frac{(\bar{X}-\mu)}{\frac{\sigma}{\sqrt{n}}} \\
\text { here: } & \bar{X} \quad=\text { sample mean } \\
& \mu \quad=\text { population mean } \\
\sigma \quad & =\text { population standard deviation } \\
& n \quad=\text { sample size }
\end{aligned}
$$

STUDENT'S t-DISTRIBUTION

Consider a random sample $\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}$ drawn from $\mathrm{N}(\mu, \sigma 2)$. It is known that $\frac{X-\mu}{\sigma / \sqrt{n}}$ exactly distributed as $\mathrm{N}(0,1)$.
$T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ is NOT distributed as $\mathrm{N}(0,1)$.

$$
\frac{X-\mu}{S / \sqrt{n}}=\frac{(X-\mu) /(\sigma / \sqrt{n})}{\sqrt{S^{2} / \sigma^{2}}}=\frac{N(0,1)}{\sqrt{\chi_{n-1}^{2} /(n-1)}}=t_{n-1}
$$

A different distribution for each $\mathrm{v}=\mathrm{n}-1$ degrees of freedom (d.f.). In statistical inference, Student's t distribution is very important.

DISTRIBUTION OF SAMPLE VARIANCE

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \quad \begin{aligned}
& \text { Sample estimate of population variance } \\
& \text { (unbiased). }
\end{aligned}
$$

Case If $Z \sim N(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$

$$
\chi_{(n-1)}^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

Multiply variance estimate by $n-1$ to get sum of squares. Divide by population variance to normalize. Result is a random variable distributed as chi-square with ($n-1$) $d f$.

We can use info about the sampling distribution of the variance estimate to find confidence intervals and conduct statistical tests.

F-DISTRIBUTION

Consider two independent random samples:
$X_{1}, X_{2}, \ldots, X_{n_{1}}$ from $N\left(\mu_{1}, \sigma_{1}^{2}\right), Y_{1}, Y_{2}, \ldots, Y_{n_{2}}$ from $N\left(\mu_{2}, \sigma_{2}^{2}\right)$.
Then

has an F-distribution with n1-1 d.f. in the numerator and n2-1 d.f. in the denominator.

- F is the ratio of two independent $\chi 2$'s divided by their respective d.f.'s
- Used to compare sample variances.

SAMPLING DISTRIBUTION OF A PROPORTION

- The parameter of interest for nominal data is the proportion of times a particular outcome (success) occurs.
- To estimate the population proportion ' p ' we use the sample proportion.

- Since X is binomial, probabilities about \hat{p} can be calculated from the binomial distribution.
- Yet, for inference about \hat{p} we prefer to use normal approximation to the binomial whenever this approximation is appropriate.
- From the laws of expected value and variance, it can be shown that $\mathrm{E}(\hat{p})=\mathrm{p}$ and $\mathrm{V}(\hat{p})=\mathrm{p}(1-\mathrm{p}) / \mathrm{n}$
- If both $n p \geq 5$ and $n(1-p) \geq 5$, then

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}
$$

- Z is approximately standard normally distributed.

