# LECTURE 8

#### SAMPLING DISTRIBUTION

## INFERENCE

- In real life calculating parameters of populations is usually impossible because populations are very large. Rather than investigating the whole population, we take a sample, calculate a **statistic** related to the **parameter** of interest, and make an inference.
- Inferential statistics allow the researcher to come to conclusions about a population on the basis of descriptive statistics about a sample.

### INFERENCE WITH A SINGLE OBSERVATION



- Each observation X<sub>i</sub> in a random sample is a representative of unobserved variables in population
- How different would this observation be if we took a different random sample?

## STATISTIC

- Let  $X_1, X_2, ..., X_n$  be a r.s. of size *n* from a population and let  $T(x_1, x_2, ..., x_n)$  be a function which does not depend on any unknown parameters. Then, the r.v. or a random vector  $Y=T(X_1, X_2, ..., X_n)$  is called a **statistic**.
- The sample mean is the arithmetic average of the values in a r.s.  $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$
- The *sample variance* is the statistic defined by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} X_{i} - \overline{X}^{2}$$

• The *sample standard deviation* is the statistic defined by *S*.

## SAMPLING DISTRIBUTION

- A statistic is also a random variable. Its distribution depends on the distribution of the random sample and the form of the function  $Y=T(X_1, X_2,...,X_n)$ .
- The probability distribution of a statistic *Y* is called the *sampling distribution* of *Y*.

- A sampling distribution is a distribution of a statistic over all possible samples.
- To get a sampling distribution,
  - Take a sample of size N (a given number like 5, 10, or 1000) from a population
  - 2. Compute the statistic (e.g., the mean) and record it.
  - 3. Repeat 1 and 2 a lot (infinitely for large pops).
  - 4. Plot the resulting *sampling distribution,* a distribution of a statistic over repeated samples.

The method we will employ on the *rules of probability* and the *laws of expected value and variance* to derive the sampling distribution.

## Example: Inference with Sample Mean



- Sample mean is our estimate of population mean
- How much would the sample mean change if we took a different sample?
- Key to this question: **Sampling Distribution** of  $\overline{x}$

# SAMPLING DISTRIBUTION OF SAMPLE MEAN

• Model assumption: our observations  $x_i$  are sampled from a population with mean  $\mu$  and variance  $\sigma^2$ 



# Example

• A fair **die** is thrown infinitely many times, with the random variable X = # of spots on any throw.

| X    | 1   | 2   | 3   | 4   | 5   | 6   |
|------|-----|-----|-----|-----|-----|-----|
| P(x) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |

• The probability distribution of X is:

$$\mu = \sum x P(x) = 1(\frac{1}{6}) + 2(\frac{1}{6}) + \dots + 6(\frac{1}{6}) = 3.5$$

...and the mean and variance are calculated as well:

$$\sigma^{2} = \sum (x - \mu)^{2} P(x) = (1 - 3.5)^{2} (\frac{1}{6}) + \dots + (6 - 3.5)^{2} (\frac{1}{6}) = 2.92$$
  
$$\sigma = \sqrt{\sigma^{2}} = \sqrt{2.92} = 1.71$$

 A sampling distribution is created by looking at all samples of size n=2 (i.e. two dice) and their means...

| Sample | $\overline{X}$ | Sample | $\overline{x}$ | Sample | X   |
|--------|----------------|--------|----------------|--------|-----|
| 1, 1   | 1.0            | 3,1    | 2.0            | 5,1    | 3.0 |
| 1, 2   | 1.5            | 3,2    | 2.5            | 5,2    | 3.5 |
| 1,3    | 2.0            | 3,3    | 3.0            | 5,3    | 4.0 |
| 1,4    | 2.5            | 3,4    | 3.5            | 5,4    | 4.5 |
| 1,5    | 3.0            | 3,5    | 4.0            | 5,5    | 5.0 |
| 1,6    | 3.5            | 3,6    | 4.5            | 5,6    | 5.5 |
| 2,1    | 1.5            | 4,1    | 2.5            | 6,1    | 3.5 |
| 2,2    | 2.0            | 4,2    | 3.0            | 6,2    | 4.0 |
| 2,3    | 2.5            | 4,3    | 3.5            | 6,3    | 4.5 |
| 2,4    | 3.0            | 4,4    | 4.0            | 6,4    | 5.0 |
| 2,5    | 3.5            | 4,5    | 4.5            | 6,5    | 5.5 |
| 2,6    | 4.0            | 4,6    | 5.0            | 6,6    | 6.0 |

While there are 36 possible samples of size 2, there are only 11 values for , and some (e.g. =3.5) occur more frequently than others (e.g. =1).

#### • The *sampling distribution* of $\overline{X}$ is shown below:





Notice that  $\sigma_{\overline{x}}^2$  is smaller than  $s_x^2$ . The larger the sample size the smaller  $\sigma_{\overline{x}}^2$ . Therefore,  $\overline{X}$  tends to fall closer to m, as the sample size increases.

# Generalize...

• We can generalize the mean and variance of the sampling of two dice:

$$\mu_{\bar{x}} = \mu$$
$$\sigma_{\bar{x}}^2 = \sigma^2 / 2$$

• ...to **n**-dice:

The standard deviation of the sampling distribution is called the *standard error*:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

$$\mu_{\bar{x}} = \mu$$
$$\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$$

# LAW OF LARGE NUMBERS AND CENTRAL LIMIT THEOREM

Both are asymptotic results about the sample mean:

- Law of Large Numbers (LLN) says that as  $n \to \infty$ , the sample mean converges to the population mean, i.e.,  $\operatorname{as} n \to \infty, \overline{X} \mu \to 0$
- Central Limit Theorem (CLT) says that as n →∞, also the distribution converges to Normal, i.e.,

as 
$$n \to \infty$$
,  $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ 

converges to N(0,1)

• If a population is normally distributed with mean  $\mu$  and standard deviation  $\sigma$ , the sampling distribution of  $\overline{X}$  is also normally distributed with

$$\mu_{\overline{X}} = \mu$$
  $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$ 

• Z-value for the sampling distribution of  $\overline{\chi}$  is calculated:

$$Z = \frac{(\overline{X} - \mu_{\overline{X}})}{\sigma_{\overline{X}}} = \frac{(\overline{X} - \mu)}{\frac{\sigma}{\sqrt{n}}}$$
  
where:  $\overline{X}$  = sample mean  
 $\mu$  = population mean  
 $\sigma$  = population standard deviation  
 $n$  = sample size

# STUDENT'S t-DISTRIBUTION

Consider a random sample X1, X2, ..., Xn drawn from N( $\mu$ , $\sigma$ 2). It is known that  $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$  exactly distributed as N(0,1).  $T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$  is NOT distributed as N(0,1).

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} = \frac{(\bar{X} - \mu) / (\sigma / \sqrt{n})}{\sqrt{S^2 / \sigma^2}} = \frac{N(0, 1)}{\sqrt{\chi_{n-1}^2 / (n-1)}} = t_{n-1}$$

A different distribution for each v= n-1 degrees of freedom (d.f.). In statistical inference, Student's t distribution is very important.

## DISTRIBUTION OF SAMPLE VARIANCE

 $s^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1}$  Sample estimate of population variance (unbiased).

Case If Z ~ N(0,1), then  $Z^2 \sim \chi_1^2$ 

$$\chi^2_{(n-1)} = \frac{(n-1)s^2}{\sigma^2}$$

Multiply variance estimate by n-1 to get sum of squares. Divide by population variance to normalize. Result is a random variable distributed as chi-square with (n-1) *df*.

We can use info about the sampling distribution of the variance estimate to find confidence intervals and conduct statistical tests.

### **F-DISTRIBUTION**

Consider two independent random samples:

X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n1</sub> from N(µ<sub>1</sub>, σ<sub>1</sub><sup>2</sup>), Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n2</sub> from N(µ<sub>2</sub>, σ<sub>2</sub><sup>2</sup>). Then  $\frac{S_1^2}{\sigma_1^2} = \frac{\frac{(n_1 - 1)S_1^2}{\sigma_1^2}}{\frac{(n_2 - 1)S_2^2}{\sigma_2^2}} = \frac{\frac{(n_1 - 1)S_1^2}{\sigma_1^2}}{\frac{(n_2 - 1)S_2^2}{\sigma_2^2}}$ 

has an F-distribution with n1-1 d.f. in the numerator and n2-1 d.f. in the denominator.

•F is the ratio of two independent  $\chi 2's$  divided by their respective d.f.'s

•Used to compare sample variances.

## SAMPLING DISTRIBUTION OF A PROPORTION

- The parameter of interest for nominal data is the proportion of times a particular outcome (success) occurs.
- To estimate the population proportion 'p' we use the sample proportion.

The number  
of successes  
The estimate of p = 
$$\frac{A}{p} = \frac{X}{n}$$

- Since X is binomial, probabilities about  $\hat{p}$  can be calculated from the binomial distribution.
- Yet, for inference about  $\hat{p}$  we prefer to use normal approximation to the binomial whenever this approximation is appropriate.
- From the laws of expected value and variance, it can be shown that  $E(\hat{p}) = p$  and  $V(\hat{p})=p(1-p)/n$
- If both  $np \ge 5$  and  $n(1-p) \ge 5$ , then

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

• Z is approximately standard normally distributed.