LECTURE 7

LIMITING DISTRIBUTIONS

LIMITING DISTRIBUTIONS

- The p.d.f. of a r.v. often depends on the sample size (i.e., n)
- If $X_{1}, X_{2}, \ldots, X_{n}$ is a sequence of rvs and $Y_{n}=u\left(X_{1}, X_{2}, \ldots\right.$, $\left.X_{n}\right)$ is a function of them, sometimes it is possible to find the exact distribution of Y_{n}.
- However, sometimes it is only possible to obtain approximate results when n is large \rightarrow limiting distributions.
- Limit Theorems can be used to obtain properties of estimators as the sample sizes tend to infinity
- Convergence in Distribution - Limit of a CDF
- Convergence in Probability - Limit of an estimator
- Central Limit Theorem - Large Sample Distribution of the Sample Mean of a Random Sample

CONVERGENCE IN DISTRIBUTION

- Consider that $X_{1}, X_{2}, \ldots, X_{n}$ is a sequence of rvs and $Y_{n}=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a function of rvs with cdfs $F_{n}(y)$ so that for each $n=1,2, \ldots$

$$
\begin{aligned}
F_{n} y & =P \quad Y_{n} \leq y \\
\lim _{n \rightarrow \infty} F_{n} y & =F \quad y \quad \text { for all } y
\end{aligned}
$$

where $F(y)$ is continuous. Then, the sequence Y_{n} is said to converge in distribution to Y .

$$
Y_{n} \xrightarrow{d} Y
$$

- Theorem: If $\lim _{n \rightarrow \infty} F_{n} y=F y$ for every point y at which $F(y)$ is continuous, then Y_{n} is said to have a limiting distribution with cdf $F(y)$. The term "Asymptotic distribution" is sometimes used instead of "limiting distribution"
- Definition of convergence in distribution requires only that limiting function agrees with cdf at its points of continuity.

Example

- Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Unif(0,1)\text {.Find}}$ the limiting distribution of the max order statistic, if it exists.
- The CDF for Y_{n} is $G_{n}(y)=y^{n} 0<y<1$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} G_{n}(y)=G(y) \quad \text { for } 0<y<1 \quad \lim _{n \rightarrow \infty} y^{n}=0 \text { for } y \leq 0 \quad \lim _{n \rightarrow \infty} y^{n}=0 \text { for } y \geq 1 \quad \lim _{n \rightarrow \infty} y^{n}=1 \\
& G(y)=\left\{\begin{array}{l}
0 y<1 \\
1 y \geq 1
\end{array}\right.
\end{aligned}
$$

Example

- Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Exp}(\theta)$. Find the limiting distribution of the min order statistic, if it exists.
- The CDF for $\mathrm{Y}_{\text {min }}$ is

$$
G_{n}(y)=1-e^{-2 y / \theta} \quad y>0
$$

$\lim _{n \rightarrow \infty} G_{n}(y)=\lim _{n \rightarrow \infty} 1-e^{-2 y / \theta}=1 \quad$ for $y>0 \quad \lim _{n \rightarrow \infty} G_{n}(y)=0$ for $y \leq 0$
$G(y)=\left\{\begin{array}{l}0 \\ 0 \leq 1 \\ 1\end{array} \quad \begin{array}{l} \\ >\end{array}\right.$

LIMITING MOMENT GENERATING FUNCTIONS

- Let $\mathrm{rv} Y_{n}$ have an $\operatorname{mgf} M_{n}(t)$ that exists for all n. If

$$
\lim _{n \rightarrow \infty} M_{n} t=M t,
$$

then Y_{n} has a limiting distribution which is defined by $M(t)$.

Example

$X \sim \operatorname{Bin} n, p$ with $\operatorname{mgf} M_{x} t=p e^{t}+1-p^{n}$ Let $\lambda=n p$. Hint: $\lim _{n \rightarrow \infty}(1+a / n)^{n}=e^{a}$

$$
\lim _{n \rightarrow \infty} M_{x} t=\lim _{n \rightarrow \infty} p e^{t}+1-p^{n}
$$

$$
=\lim _{n \rightarrow \infty}\left(1+\frac{\lambda e^{t}-1}{n}\right)_{\text {The mg of Poisson }(\lambda)}^{n}=e^{\lambda t^{t-1}}=M_{y} t
$$

The limiting distribution of Binomial rv is the Poisson distribution.

Example

$X \sim \operatorname{Poisson}(\lambda) \Rightarrow E(X)=\lambda=V(X), \quad M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$
$Y=\frac{X-E(X)}{\sqrt{V(X)}}=\frac{X-\lambda}{\sqrt{\lambda}}=a X+b \quad a=\frac{1}{\sqrt{\lambda}}, \quad b=-\sqrt{\lambda}$
$M_{a X+b}(t)=e^{b t} M_{X}(a t)$
$\Rightarrow M_{Y}(t)=e^{-t \sqrt{\lambda}} e^{\lambda\left(e^{t / \sqrt{\lambda}}-1\right)}=\exp -t \sqrt{\lambda}+\lambda e^{t / \sqrt{\lambda}}-1$
Use: $e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!} \Rightarrow e^{t / \sqrt{\lambda}}-1=-1+1+t / \sqrt{\lambda}+\frac{t^{2} / \lambda}{2!}+\frac{t^{3} / \lambda^{3 / 2}}{3!}+\cdots$
$\Rightarrow M_{Y}(t)=\exp \left\{-t \sqrt{\lambda}+\lambda\left(-1+1+t / \sqrt{\lambda}+\frac{(/ \lambda)}{2!}+\frac{\left(1 / \lambda^{3 / 2}\right)}{3!}+\cdots\right)\right\}$
$=\exp \left\{-t \sqrt{\lambda}+\left((\sqrt{\lambda}) \frac{()}{2!}+\frac{\left(1 / \lambda^{1 / 2}\right)}{3!}+\cdots\right)\right\}=\exp \left\{\left(\frac{(2)}{2!}+\frac{\left(1 / \lambda^{1 / 2}\right)}{3!}+\cdots\right)\right\}$
Now taking limit as $\lambda \rightarrow \infty$:
$\lim _{\lambda \rightarrow \infty} M_{Y}(t)=\lim _{\lambda \rightarrow \infty} \exp \left\{\left(\frac{()}{2!}+\frac{\left(1 \lambda^{1 / 2}\right)}{3!}+\cdots\right)\right\}=e^{t^{2} / 2} \equiv \operatorname{MGF}(N(0,1))$

CONVERGENCE IN PROBABILITY

- The sequence of random variables, X_{1}, \ldots, X_{n}, is said to converge in probability to the constant c, if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-c\right| \leq \varepsilon\right)=1
$$

- Weak Law of Large Numbers (WLLN): Let X_{1}, \ldots, X_{n} be iid random variables with $E\left(X_{i}\right)=\mu$ and $V\left(X_{i}\right)=\sigma^{2}<\infty$. Then the sample mean converges in probability to μ :

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P \quad\left|\bar{X}_{n}-\mu\right| \geq \varepsilon=0 \quad \text { or } \quad \lim _{n \rightarrow \infty} P \quad\left|\bar{X}_{n}-\mu\right| \leq \varepsilon=1 \\
& \text { where } \bar{X}_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}
\end{aligned}
$$

PROOF OF WLLN

$E \bar{X}_{n}=\mu_{\bar{X}}=\mu \quad V \bar{X}_{n}=\frac{\sigma^{2}}{n} \Rightarrow \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$
Chebyshev's Inequality: $P\left(\mu_{X}-k \sigma_{X} \leq X \leq \mu_{X}+k \sigma_{X}\right) \geq 1-\frac{1}{k^{2}} \quad(k \geq 1)$
$\Rightarrow P\left(\left|X-\mu_{X}\right| \leq k \sigma_{X}\right) \geq 1-\frac{1}{k^{2}} \Rightarrow P\left(\left|X-\mu_{X}\right| \geq k \sigma_{X}\right) \leq \frac{1}{k^{2}}$
$\Rightarrow P\left(\left|\bar{X}_{n}-\mu_{\bar{X}}\right| \geq k \sigma_{\bar{X}}=\frac{k \sigma}{\sqrt{n}}\right) \leq \frac{1}{k^{2}}$
Let: $\varepsilon=\frac{k \sigma}{\sqrt{n}} \Rightarrow k=\frac{\sqrt{n} \varepsilon}{\sigma} \Rightarrow k^{2}=\frac{n \varepsilon^{2}}{\sigma^{2}} \Rightarrow \frac{1}{k^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}}$
$\Rightarrow P\left(\left|\bar{X}_{n}-\mu_{\bar{x}}\right| \geq k \sigma_{\bar{X}}=\frac{k \sigma}{\sqrt{n}}=\varepsilon\right) \leq \frac{1}{k^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}}$
$\Rightarrow \lim _{n \rightarrow \infty} P\left(X_{n}-\mu_{\bar{X}} \mid \geq \varepsilon\right) \lim _{n \rightarrow \infty} \frac{\sigma^{2}}{n \varepsilon^{2}}=0 \quad \forall \varepsilon>0$
$\Rightarrow \bar{X}_{n} \xrightarrow{\text { Prob }} \mu$

- Binomial Sample Proportions
$X \sim \operatorname{Binomial}(n, p) \quad X_{i}=\left\{\begin{array}{ll}1 & \text { if Trial } i \text { is a Success } \\ 0 & \text { if Trial } i \text { is a Failure }\end{array} \quad E\left(X_{i}\right)=p \quad V\left(X_{i}\right)=p(1-p)\right.$
$X=\sum_{i=1}^{n} X_{i} \Rightarrow E(X)=n p, \quad V(X)=n p(1-p)$
Let $\hat{p}=\frac{X}{n}=\frac{\sum_{i=1}^{n} X_{i}}{n} \Rightarrow E(\hat{p})=p, \quad V(\hat{p})=\frac{p(1-p)}{n}$
\wedge Prob
$\Rightarrow p \rightarrow p$

STRONG LAW OF LARGE NUMBERS

- Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be iid rvs with $\mathrm{E}\left(\mathrm{X}_{\mathrm{i}}\right)=\mu$ and $\mathrm{V}\left(\mathrm{X}_{\mathrm{i}}\right)=\sigma^{2}<\infty$. Define $\bar{X}_{n}=1 / n \sum_{i=1}^{n} X_{i}$. Then, for every $\varepsilon>0$,

$$
P \lim _{n \rightarrow \infty}\left|\bar{X}_{n}-\mu\right|<\varepsilon=1
$$

that is, \bar{X}_{n} converges almost surely to μ.

RELATION BETWEEN CONVERGENCES

Almost sure convergence is the strongest.

$$
Y_{n} \xrightarrow{\text { a.s }} Y \Rightarrow Y_{n} \xrightarrow{p} Y \Rightarrow Y_{n} \xrightarrow{d} Y
$$

THE CENTRAL LIMIT THEOREM

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of iid rvs with $E\left(X_{i}\right)=\mu$ and $V\left(X_{i}\right)=\sigma^{2}<\infty$. Define $\bar{X}_{n}=1 / n \sum_{i=1}^{n} X_{i}$
Then,

$$
Z=\frac{\sqrt{n} \bar{X}_{n}-\mu}{\sigma} \stackrel{d}{\rightarrow} N 0,1
$$

or

$$
Z=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma} \xrightarrow{d} N 0,1 .
$$

Example

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid rvs from $\operatorname{Unif}(0,1)$ and

$$
Y_{n}=\sum_{i=1}^{n} X_{i}
$$

- $E\left(X_{i}\right)=1 / 2$ and $\operatorname{Var}\left(X_{i}\right)=1 / 12$
- $Y_{n} \sim N(n / 2, n / 12)$

Examples

- A very common application of the CLT is the Normal approximation to the Binomial distribution.
- Suppose X_{1}, X_{2}, \ldots are i.i.d random variables and each has the Bernoulli (p) distribution. So $E\left(X_{i}\right)=p$ and $V\left(X_{i}\right)=p(1-p)$.
- The CLT says that

$$
P\left(\gamma_{1}+\cdots+X_{n} \leq n p+x \sqrt{n p(-p}\right)
$$

- Let $Y_{n}=X_{1}+\ldots+X_{n}$ then Y_{n} has a $\operatorname{Binomial}(n, p)$ distribution.

So for large n,

$$
P \mathbb{《}_{n} \leq y>P\left(\frac{Y_{n}-n p}{\sqrt{n p<-p}} \leq \frac{y-n p}{\sqrt{n p<-p}}\right) \approx \Phi\left(\frac{y-n p}{\sqrt{n p<-p}}\right)
$$

SLUTKY'S THEOREM

- If $X_{n} \rightarrow X$ in distribution and $Y_{n} \rightarrow a$, a constant, in probability, then
a) $Y_{n} X_{n} \rightarrow a X$ in distribution.
b) $X_{n}+Y_{n} \rightarrow X+a$ in distribution.

SOME THEOREMS ON LIMITING DISTRIBUTIONS

- If $X_{n} \rightarrow c>0$ in probability, then for any function $\mathrm{g}(\mathrm{x})$ continuous at $\mathrm{c}, \mathrm{g}\left(X_{n}\right) \rightarrow g(c)$ in prob. e.g.

$$
{\sqrt{X_{n}}}^{p} \sqrt{c}
$$

- If $X_{n} \rightarrow c$ in probability and $Y_{n} \rightarrow d$ in probability, then
- $a X_{n}+b Y_{n} \rightarrow a c+b d$ in probability.
- $X_{n} Y_{n} \rightarrow c d$ in probability
- $1 / X_{n} \rightarrow 1 / c$ in probability for all $c \neq 0$.

Example

- Consider a random sample size of n from Bernoulli distribution $\quad X_{i} \sim \operatorname{Bin}(1, p)$

$$
\begin{aligned}
& \frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \xrightarrow{d} Z \sim N(0,1) \\
& Y \sim \operatorname{Bin}(n, p) \quad \hat{p}=Y / n \rightarrow p \quad \hat{p}(1-\hat{p}) \xrightarrow{p} p(1-p) \\
& \sqrt{\hat{p}(1-\hat{p}) / p(1-p)} \\
& \frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p}) / n}}{ }^{d} Z \sim N(0,1)
\end{aligned}
$$

