
LECTURE 13  

REGRESSION ANALYSIS 



SIMPLE LINEAR REGRESSION  
• In simple regression our objective is to study the 

relationship between two variables X and Y. It is the 
process of estimating a functional relationship between X 
and Y.  

• The function is a mathematical relationship enabling us to 
predict what values of one variable (Y) correspond to 
given values of another variable (X).  

 Y:  is referred to as the dependent variable, the response 
variable or the predicted variable. 

 X: is referred to as the independent variable, the 
explanatory variable or the predictor variable.  
 

• Another way to study relationship between two variables 
is correlation. It involves measuring the direction and the 
strength of the linear relationship.  



SIMPLE LINEAR REGRESSION MODEL 

Where 
b0= y-intercept 
b1= slope of the line 
 = error variable 

This model is  
Simple: only one X 
Linear in the parameters: No parameter appears as exponent 
or is multiplied or divided by another parameter 
Linear in the predictor variable (X): X appears only in the first 
power.  
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Examples 

• Multiple Linear Regression: 

 

• Polynomial Linear Regression: 

 

 

• Linear Regression: 

 

• Nonlinear Regression: 
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or, emphasizing that f(X) depends on unknown parameters. 
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What if we don’t know the functional form of the relationship? 

• Look at a scatter plot of the data for suggestions. The scatter 

plot shows that the points are not on a line, and so, in addition 

to the relationship. 

• Hypothesize about the nature of the underlying process.  Often 

the hypothesized processes will suggest a functional form. 

• We assume that the errors are normal, mutually independent, 

and have variance 2. 

THE ERROR TERM 



DETERMINISTIC COMPONENT OF MODEL 
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Objective: Minimize the difference between the observation 
and its prediction according to the line. 

PARAMETER ESTIMATION 
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We want the line which is best for all points.  This is done by 
finding the values of b0 and b1 which minimizes some sum of 
errors.  There are a number of ways of doing this.  Consider these 
two: 

The method of least squares produces estimates with statistical 
properties (e.g. sampling distributions) which are easier to 
determine. 

Referred to as least squares estimates. 

Sum of squared 
residuals 
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Calculus is used to find the least squares estimates. 

Solve this system of two equations in two unknowns. 

Note: The parameter estimates will be functions of the data,  
 hence they will be statistics. 

NORMAL EQUATIONS 
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Sums of 
squares of x. 

Sums of 
squares of 

y. 

Sums of 
cross 

products of 
x and y. 

Sums of Squares 



PARAMETER ESTIMATES 
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Ho:  There is no relationship between Y and X. 

HA:   There is a relationship between Y and X. 

Which of two competing models is more appropriate? 

We look at the sums of squares of the prediction errors for the 
two models and decide if that for the linear model is 
significantly smaller than that for the mean model. 

TESTING FOR A STATISTICALLY SIGNIFICANT 
REGRESSION 
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Sum of squares about the mean:  sum of the prediction errors 
for the null (mean model) hypothesis. 

SUMS OF SQUARES ABOUT THE MEAN (TSS) 

TSS is actually a measure of the variance of the responses. 
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RESIDUAL SUMS OF SQUARES 

Sum of squares for error:  sum of the prediction errors for the 
alternative (linear regression model) hypothesis. 

SSE measures the variance of the residuals, the part of the 
response variation that is not explained by the model. 
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REGRESSION SUMS OF SQUARES 

Sum of squares due to the regression:  difference between TSS 
and SSE, i.e. SSR = TSS – SSE. 

SSR measures how much variability in the response is 
explained by the regression. 
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Mean Model 

Linear Model 

Total 
variability in 
y-values 

= 
Variability 
accounted for 
by the 
regression 

+ 
Unexplained 
variability 

TSS =  SSR + SSE 

GRAPHICAL VIEW 



Total 
variability in 
y-values 

= 
Variability 
accounted for 
by the 
regression 

+ 
Unexplained 
variability 

Then SSR approaches TSS  and SSE gets small. 

Then SSR approaches 0 and SSE approaches TSS. 

TSS =  SSR + SSE 

regression model fits well 

regression model adds little 
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MEAN SQUARE TERMS 



Both MSE and MSR measure the same underlying variance quantity 
under the assumption that the null (mean) model holds. 

Under the alternative hypothesis, the MSR should be much greater 
than the MSE. 

Placing this in the context of a test of variance. 
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RF Test Statistic 

F should be near 1 if the regression is not significant, i.e. H0: mean 
model holds. 

F TEST FOR SIGNIFICANT REGRESSION 



H0:   No significant regression fit. 
HA:   X is a significant predictor of Y. 

Reject H0 if: 

Where  is the probability of a type I error. 

Test Statistic: 
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1. e1, e2, … en are independent of each other. 
2. The ei are normally distributed with mean zero and 

have common variance s 2. 

How do we check these assumptions? 

I. Appropriate graphs. 
II. Correlations (more later). 
III. Formal goodness of fit tests. 

ASSUMPTIONS 



We summarize the computations of this test in a table. 

ANALYSIS OF VARIANCE TABLE 

TSS 



Under the assumptions for regression inference, the least squares 
estimates themselves are random variables. 

1. 1, 2, … n are independent of each other. 
2. The i are normally distributed with mean zero and have 

common variance . 

Using some more calculus and mathematical statistics we can 
determine the distributions for these parameters. 

Parameter Standard Error Estimates 
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R² AND R² ADJUSTED 

• R² measures the degree of linear association between X and Y. 

• So, an R² close to 0 does not necessarily indicate that X and Y 
are unrelated (relation can be nonlinear) 

• Also, a high R² does not necessarily indicate that the 
estimated regression line is a good fit.  

• As more and more X’s are added to the model, R² always 
increases. R²adj accounts for the number of parameters in the 
model.  
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TESTING THE SLOPE  

• Are X and Y linearly related? 

 

•Test Statistic: 
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• The Rejection Region:  

    Reject H0 if   t < -t /2,n-2 or t > t /2,n-2. 

 

• If we are testing that high x values lead to high y values, 
HA: 1>0.  

• Then, the rejection region is  t > t ,n-2. 

 

• If we are testing that high x values lead to low y values 
or low x values lead to high y values, HA: 1 <0.  

• Then, the rejection region is t < - t ,n-2. 

 

 



PREDICTION AND CONFIDENCE INTERVALS 

• Prediction Interval of y for x=xg: The confidence 
interval for predicting the particular value of y for a 
given x 

 

 

• Confidence Interval of E(y|x=xg): The confidence 
interval for estimating the expected value of y for a 
given x 

 

 



Example 

• An educational economist wants to establish the 
relationship between an individual’s income and 
education. He takes a random sample of 10 individuals 
and asks for their income ( in $1000s) and education ( 
in years). The results are shown below. Find the least 
squares regression line. 

 

11 12 11 15 8 10 11 12 17 11 

25 33 22 41 18 28 32 24 53 26 

Education 

Income 



First Step: 
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Sum of Squares: 
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The Least Squares Regression Line 

• The least squares regression line is 

 

• Interpretation of coefficients: 

*The sample slope                   tells us that on average 
for each additional year of education, an individual’s 
income rises by $3.74 thousand.  

• The y-intercept is                     . This value is the 
expected (or average) income for an individual who 
has 0 education level (which is meaningless here)  

ˆ 13.93 3.74y x



Example 

• In baseball, the fans are always interested in determining 
which factors lead to successful teams. The table below lists 
the team batting average and the team winning percentage 
for the 14 league teams at the end of a recent season.  

Team-B-A Winning%

0.254 0.414

0.269 0.519

0.255 0.500

0.262 0.537

0.254 0.352

0.247 0.519

0.264 0.506

0.271 0.512

0.280 0.586

0.256 0.438

0.248 0.519

0.255 0.512

0.270 0.525

0.257 0.562

y = winning %  and 
x = team batting 
average 



a) LS Regression Line 
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• The least squares regression line is 

 

 

• The meaning                    is for each additional 
batting average of the team, the winning 
percentage increases by an average of 79.41%.  
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b) Standard Error of Estimate 

 
 
 
 
 
So, 
 
• Since s =0.0567 is small, we would conclude that “s” 

is relatively small, indicating that the regression line 
fits the data quite well.  
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c) Do the data provide sufficient evidence at the 5% 
significance level to conclude that higher team batting 
average lead to higher winning percentage?   
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Test statistic:  t 1.69      (p-value=.058)

s

Conclusion:  Do not reject H0 at  = 0.05. The higher 
team batting average does not lead to higher winning 
percentage. 
 



d)Coefficient of Determination 

 

 

 

 
The 19.25% of the variation in the winning percentage 
can be explained by the batting average. 



e) Predict with 90% confidence the winning percentage 
of a team whose batting average is 0.275. 

90% PI for y: 

•The prediction is that the winning percentage of the 

team will fall between 39.85% and 62.53%. 


