LECTURE 11

EXPONENTIAL FAMILY, FISHER INFORMATION, CRAMER-RAO LOWER BOUND (CRLB)

EXPONENTIAL FAMILY PDFS

- X is a continuous (discrete) rv with $\operatorname{pdf} f(x ; \theta), \theta \in \Omega$. If the pdf can be written in the following form

$$
\mathrm{f}(\mathrm{x} ; \theta)=\mathrm{h}(\mathrm{x}) \mathrm{c}(\theta) \exp \left(\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{w}_{\mathrm{j}}(\theta) \mathrm{t}_{\mathrm{j}}(\mathrm{x})\right)
$$

then, the pdf is a member of exponential class of pdfs of the continuous (discrete) type. (Here, k is the number of parameters)

REGULAR CASE OF THE EXPONENTIAL FAMILY

- We have a regular case of the exponential class of pdfs of the continuous type if
a) Range of X does not depend on θ.
b) $c(\theta) \geq 0, w_{1}(\theta), \ldots, w_{k}(\theta)$ are real valued functions of θ for $\theta \in \Omega$.
c) $h(x) \geq 0, t_{1}(x), \ldots, t_{k}(x)$ are real valued functions of x.

If the range of X depends on θ, then it is called irregular exponential class or range-dependent exponential class.

EXAMPLE

$X \sim \operatorname{Bin}(n, p)$, where n is known. Is this pdf a member of exponential class of pdfs?

$$
\begin{aligned}
f(x ; p) & =\binom{n}{x} p^{x}(1-p)^{n-x} ; \quad x=0,1, \ldots, n ; \quad 0<p<1 \\
& =\binom{n}{x}(1-p)^{n} \exp \left(x \ln \left(\frac{p}{1-p}\right)\right) \\
h(x) & =\binom{n}{x} \text { for } \quad x=0, \ldots, n ; \quad c(p)=(1-p)^{n} \quad \text { for } \quad 0<p<1 \\
t_{1}(x) & =x \quad \text { for } \quad x=0, \ldots, n ; \quad w_{1}(p)=\ln \left(\frac{p}{1-p}\right) \quad \text { for } \quad 0<p<1
\end{aligned}
$$

Binomial family is a member of exponential family of distributions.

EXAMPLE

$X^{\sim} \operatorname{Cauchy}(1, \theta)$. Is this pdf a member of exponential class of pdfs?

$$
\begin{aligned}
& f(x ; \theta)=\left(\pi\left(1+[x-\theta]^{2}\right)\right)^{-1}=\frac{1}{\pi} \exp \left\{-\ln \left(1+x^{2}-2 \theta x+\theta^{2}\right)\right\} \\
& h(x)=\frac{1}{\pi} ; \quad c(\theta)=1 ; \quad-\ln \left(1+x^{2}-2 \theta x+\theta^{2}\right) \neq t_{1}(x) w_{1}(\theta)
\end{aligned}
$$

Cauchy is not a member of exponential family.

EXPONENTIAL CLASS and CSS

- Random Sample from Regular Exponential Class

EXAMPLE

Let $\mathrm{X} 1, \mathrm{X} 2, . . . \sim \operatorname{Bin}(1, p)$, i.e., $\operatorname{Ber}(p)$.
This family is a member of exponential family of distributions.

$$
\begin{aligned}
& t_{1}(x)=x \quad \text { for } \quad x=0, \ldots, n \quad \text { is a CSS for } \mathrm{p} . \\
& \sum_{i=1}^{n} t_{1}\left(x_{i}\right)=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

\bar{X} is UE of p and a function of CSS.
$\Longleftrightarrow \bar{X}$ is UMVUE of p.

EXAMPLES

$X \sim N\left(\mu, \sigma^{2}\right)$ where both μ and σ^{2} is unknown. Find a css for μ and σ^{2}.

$$
\begin{aligned}
& f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\sigma^{2}}} e^{-\frac{\mu^{2}}{2 \sigma^{2}} e^{\left(-\frac{x^{2}}{2 \sigma^{2}} \frac{\mu x}{\sigma^{2}}\right)}} \\
& \theta_{1}=\frac{\mu^{2}}{2 \sigma^{2}}, \quad \theta_{2}=\frac{1}{\sigma^{2}}, \quad h(x)=\frac{1}{\sqrt{2 \pi}}, \quad c(\theta)=e^{-\theta_{1}} \sqrt{\theta_{2}} \\
& w_{1}=2 \theta_{1}, w_{2}=-\frac{1}{2} \theta_{2}, \quad t_{1}=x, \quad t_{2}=x \\
& t_{1}(x)=x \quad \text { for } x=0, \ldots, n \\
& \sum_{i=1}^{n} t_{1}\left(x_{i}\right)=\sum_{i=1}^{n} x_{i} \\
& t_{2}(x)=x^{2} \quad \text { for } x=0, \ldots, n \quad \text { are css for } \mu \text { and } \sigma^{2} \\
& \sum_{i=1}^{n} t_{2}\left(x_{i}\right)=\sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

THE SCORE

- The score of the family $f(x \mid \theta)$ is the random variable

$$
\frac{\partial}{\partial \theta} \ln f(x \mid \theta)=\frac{\frac{\partial}{\partial \theta} f(x \mid \theta)}{f(x \mid \theta)}
$$

measures the "sensitivity" of $f(x \mid \theta)$ as a function of the parameter θ.
$E\left[\frac{\partial}{\partial \theta} \ln f(x \mid \theta)\right]=0$
Proof

$$
\begin{aligned}
& E\left[\frac{\partial}{\partial \theta} \ln f(x \mid \theta)\right]=\int \frac{\frac{\partial}{\partial \theta} f(x \mid \theta)}{f(x \mid \theta)} f(x \mid \theta) d x=\int \frac{\partial}{\partial \theta} f(x \mid \theta) d x \\
& \quad=\frac{\partial}{\partial \theta} \int f(x \mid \theta) d x=\frac{\partial}{\partial \theta} 1=0
\end{aligned}
$$

As a result
$\operatorname{var}\left[\frac{\partial}{\partial \theta} \ln f(x \mid \theta]=E\left[\left(\frac{\partial}{\partial \theta} \ln f(x \mid \theta)-E\left[\frac{\partial}{\partial \theta} \ln f(x \mid \theta)\right]\right)^{2}\right]=E\left[\left(\frac{\partial}{\partial \theta} \ln f(x \mid \theta)\right)^{2}\right]\right.$

Example

- Consider the normal distribution $N(\mu, 1)$

$$
\begin{aligned}
& f(x \mid \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\mu)^{2}\right) \\
& \ln f(x \mid \mu)=-\frac{1}{2} \ln (2 \pi)-\frac{1}{2}(x-\mu)^{2}
\end{aligned}
$$

$$
\text { The score }=s=\frac{\partial}{\partial \mu} \ln f(x \mid \mu)=x-\mu
$$

- clearly,

$$
E[s]=E[x-\mu]=E[x]-\mu=0
$$

- and

$$
\operatorname{var}(s)=E\left[s^{2}\right]=E\left[(x-\mu)^{2}\right]=\sigma^{2}=1
$$

THE SCORE - VECTOR FORM

- In case where $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ is a vector, the S score is the vector whose ith component is

$$
s_{i}=\frac{\partial}{\partial \theta_{i}} \ln f(x \mid \theta)
$$

Example

$$
\begin{aligned}
& f(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \\
& \ln f(x \mid \mu, \sigma)=-\frac{1}{2} \ln (2 \pi)-\ln \sigma-\frac{1}{2 \sigma^{2}}(x-\mu)^{2} \\
& \frac{\partial}{\partial \mu} \ln f(x \mid \mu, \sigma)=\frac{x-\mu}{\sigma^{2}} \\
& \frac{\partial}{\partial \sigma} \ln f(x \mid \mu, \sigma)=-\frac{1}{\sigma}+\frac{(x-\mu)^{2}}{\sigma^{3}} \\
& S=\left(\frac{x-\mu}{\sigma^{2}},-\frac{1}{\sigma}+\frac{(x-\mu)^{2}}{\sigma^{3}}\right)
\end{aligned}
$$

FISHER INFORMATION

- Fisher information (about θ), is the variance of the score

$$
J(\theta)=E\left[\frac{\partial}{\partial \theta} \ln p(x \mid \theta)\right]^{2}
$$

- It is designed to provide a measure of how much information the parametric probability law $f(x \mid \theta)$ carries about the θ
- The properties:
- The larger the sensitivity of $f(x \mid \theta)$ to changes in θ, the larger should be the information
- The information carried by the combined law $f\left(x_{1}, x_{2} \mid \theta\right)$ should be the sum of those carried by $f\left(x_{1} \mid \theta\right)$ and $f\left(x_{2} \mid \theta\right)$
- The information should be insensitive to the sign of the change in θ and preferably positive.
- The information should be a deterministic quantity

Example

- Consider a random variable $X \sim N\left(\theta, \sigma^{2}\right)$

$$
\begin{aligned}
& \ln f(x \mid \theta, \sigma)=-\frac{1}{2} \ln (2 \pi)-\ln \sigma-\frac{1}{2 \sigma^{2}}(x-\theta)^{2} \\
& s=\frac{\partial}{\partial \theta} \ln p(x \mid \theta, \sigma)=\frac{x-\theta}{\sigma^{2}} \\
& J(\theta)=E\left[s^{2}\right]=E\left[\left(\frac{x-\theta}{\sigma^{2}}\right)^{2}\right]=\frac{1}{\sigma^{4}} E\left[(x-\theta)^{2}\right]=\frac{\sigma^{2}}{\sigma^{4}}=1 / \sigma^{2}
\end{aligned}
$$

- Whenever $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ is a vector, Fisher information is the matrix $J(\theta)=\left(J_{i, j}(\theta)\right)$ where

$$
J_{i, j}(\theta)=\operatorname{cov}_{\theta}\left(\frac{\partial}{\partial \theta_{i}} \log f(x \mid \theta), \frac{\partial}{\partial \theta_{j}} \log f(x \mid \theta)\right)
$$

- Let $x^{(n)}=x_{1}, \ldots, x_{n}$ be i.i.d. random variables $x_{i} \sim f\left(x_{i} \mid \theta\right)$. The score of $f\left(x^{(n)} \mid \theta\right)$ is the sum of the individual scores.

$$
\begin{aligned}
s\left(x^{(n)}\right) & =\frac{\partial}{\partial \theta} \ln f\left(x^{(n)} \mid \theta\right)=\frac{\partial}{\partial \theta} \ln \prod_{i} f\left(x_{i} \mid \theta\right) \\
& =\sum_{i} \frac{\partial}{\partial \theta} \ln f\left(x_{i} \mid \theta\right) \\
& =\sum_{i} s\left(x_{i}\right)
\end{aligned}
$$

- Based on n i.i.d. samples, the Fisher information about θ is

$$
\begin{aligned}
J_{n}(\theta) & =E\left[\frac{\partial}{\partial \theta} \ln f\left(x^{(n)} \mid \theta\right)\right]^{2} \\
& =E\left[s^{2}\left(x^{(n)}\right)\right]=E\left[\sum_{i=1}^{n} s\left(x_{i}\right)\right]^{2} \\
& =\sum_{i=1}^{n} E\left[s^{2}\left(x_{i}\right)\right]=n J(\theta)
\end{aligned}
$$

- Thus, the Fisher information is additive w.r.t. i.i.d. random variables.

Example

- If $x^{(n)}=x_{1}, \ldots, x_{n}$ are i.i.d. $x_{i} \sim N\left(\theta, \sigma^{2}\right)$, the score is

$$
\begin{aligned}
& n \frac{\partial}{\partial \theta} \ln f(x \mid \theta, \sigma)=n \frac{x-\theta}{\sigma^{2}} \\
& J(\theta)=1 / \sigma^{2} \\
& J_{n}(\theta)=n / \sigma^{2}
\end{aligned}
$$

CRAMER-RAO LOWER BOUND (CRLB)

- Theorem: Let $\hat{\theta}$ be an unbiased estimator for θ. Then

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{J(\theta)}
$$

- Proof: Using $E(s)=0$ we have:

$$
\begin{aligned}
E[(s-E(s))(\hat{\theta}-E(\hat{\theta}))] & =E[s(\hat{\theta}-E(\hat{\theta}))] \\
= & E[s \hat{\theta}]-E(\hat{\theta}) E(s) \\
& =E[s \hat{\theta}]
\end{aligned}
$$

- Now

$$
\begin{aligned}
E[s \hat{\theta}] & =\int \frac{\frac{\partial}{\partial \theta} f(x \mid \theta)}{f(x \mid \theta)} \hat{\theta} f(x \mid \theta) d x \\
& =\int \frac{\partial}{\partial \theta} f(x \mid \theta) \hat{\theta} d x \\
& =\frac{\partial}{\partial \theta} \int f(x \mid \theta) \hat{\theta} d x \\
& =\frac{\partial}{\partial \theta} E_{\theta}[\hat{\theta}]=\frac{\partial}{\partial \theta} \theta=1 \quad \text { If } \hat{\theta} \text { is unbiased estimator }
\end{aligned}
$$

- So, $E[(s-E(s))(\hat{\theta}-E(\hat{\theta}))]=E[s \hat{\theta}]=1$
- By the Cauchy-Schwarz inequality

$$
\begin{gathered}
1=(E[(s-E(s))(\hat{\theta}-E(\hat{\theta}))])^{2} \leq E\left[(s-E(s))^{2}\right] E\left[(\hat{\theta}-E(\hat{\theta}))^{2}\right] \\
=E\left[s^{2}\right] \operatorname{var}(\hat{\theta}) \\
=J(\theta) \operatorname{var}(\hat{\theta})
\end{gathered}
$$

- Therefore,

$$
\operatorname{var}(\hat{\theta}) \geq \frac{1}{J(\theta)}
$$

- For a biased estimator we have:

$$
\operatorname{var}(\hat{\theta}) \geq \frac{\left(1+\frac{\partial}{\partial \theta}(E(\hat{\theta})-\theta)\right)^{2}}{J(\theta)}
$$

CRAMER-RAO LOWER BOUND (CRLB) GENERAL

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be sample random variables.
- The Fisher Information in the random sample is $J_{n}(\theta)$
- Range of X does not depend on θ.
- $\mathrm{Y}=\mathrm{U}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$: a statistic; doesnot contain θ.
- Let $E(Y)=m(\theta)$.
$V(Y) \geq \frac{\left[m^{\prime}(\theta)\right]^{2}}{J_{n}(\theta)} \Rightarrow$ The Cramer-Rao Lower Bound

Example

- Let $x^{(n)}=x_{1}, \ldots, x_{n}$ be i.i.d. $x_{i} \sim N\left(\theta, \sigma^{2}\right)$.From previous example $J_{n}(\theta)=n / \sigma^{2}$
- Now let $\hat{\theta}\left(x^{(n)}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ be an (unbiased) estimator for θ.

$$
\begin{aligned}
E\left(\hat{\theta}^{2}\right) & =\frac{1}{n^{2}} E\left(\sum_{i=1}^{i=1} x_{i}\right)^{2}=\frac{1}{n^{2}}\left(n^{2} \theta^{2}+n \sigma^{2}\right) \\
= & \theta^{2}+\sigma^{2} / n
\end{aligned}
$$

$\operatorname{var}(\hat{\theta})=E_{\theta}(\hat{\theta}-E(\hat{\theta}))^{2}=E(\hat{\theta}-\theta)^{2}=E\left(\hat{\theta}^{2}\right)-2 \theta E(\hat{\theta})+\theta^{2}=E\left(\hat{\theta}^{2}\right)-\theta^{2}$

- So $\operatorname{var}(\hat{\theta})=\sigma^{2} / n$ matches the Cramer-Rao lower bound.

Example

- Suppose $\quad x \sim \operatorname{Binomial}(n, p)$

$$
\begin{aligned}
& f(x ; p)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
& \ln f(x ; p)=\ln \binom{n}{x}+x \ln p+(n-x) \ln (1-p)
\end{aligned}
$$

$\frac{\partial \ln f(x ; p)}{\partial p}=\frac{x}{p}-\frac{n-x}{1-p}=\frac{x-n p}{p(1-p)}$
$\left(\frac{\partial \ln f(x ; p)}{\partial p}\right)^{2}=\left(\frac{x-n p}{p(1-p)}\right)^{2}$
$E\left[\left(\frac{\partial \ln f(x ; p)}{\partial p}\right)^{2}\right]=\frac{E\left[(x-n p)^{2}\right]}{p^{2}(1-p)^{2}}=\frac{\operatorname{var}(X)}{p^{2}(1-p)^{2}}=\frac{n p(1-p)}{p^{2}(1-p)^{2}}=\frac{n}{p(1-p)}$

Any unbiased estimator \hat{p} of p is efficient if satisfies
$\operatorname{var}(\hat{p})=\frac{1}{n}=\frac{p(1-p)}{n} C R L B$
$p(1-p)$
Suppose $\hat{p}=\frac{x}{n}$
$E(\hat{p})=E\left(\frac{x}{n}\right)=\frac{E(x)}{n}=\frac{n p}{n}=p \quad$ unbiased
$\operatorname{var}(\hat{p})=\operatorname{var}\left(\frac{x}{n}\right)=\frac{\operatorname{var}(x)}{n^{2}}=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}$
Then $\hat{p} \mathrm{EE}$

LIMITING DISTRIBUTION OF MLEs

- $\hat{\theta}$: MLE of θ
- $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample.
$m(\hat{\theta}) \stackrel{\text { assmyytotically }}{\sim} N\left(m(\theta), C R L B=\frac{\left[m^{\prime}(\theta)\right]^{2}}{J_{n}(\theta)}\right)$
for large $\mathrm{n} \quad m(\hat{\theta}) \stackrel{\text { assmytotically }}{\sim} N\left(m(\theta), C R L B=\frac{1}{J_{n}(\theta)}\right)$

EFFICIENT ESTIMATOR

- $\hat{\theta}$ is an efficient estimator (EE) of θ if - $\hat{\theta}$ is UE of θ, and, $-\operatorname{Var}(\hat{\theta})=$ CRLB
- Y is an efficient estimator (EE) of its expectation, $m(\theta)$, if its variance reaches the CRLB.
- An EE of $m(\theta)$ may not exist.
- The EE of $m(\theta)$, if exists, is unique.
- The EE of $m(\theta)$ is the unique MVUE of $m(\theta)$.

ASYMPTOTIC EFFICIENT ESTIMATOR

- Y is an asymptotic EE of $m(\theta)$ if

$$
\begin{gathered}
\lim _{n \rightarrow \infty} E(Y)=m(\theta) \\
\text { and } \\
\lim _{n \rightarrow \infty} V(Y)=C R L B
\end{gathered}
$$

