
LECTURE 11  

EXPONENTIAL FAMILY, FISHER 
INFORMATION, CRAMER-RAO LOWER 

BOUND (CRLB) 



EXPONENTIAL FAMILY PDFS 

• X is a continuous (discrete) rv with pdf f(x;), . If 
the pdf can be written in the following form 

then, the pdf is a member of exponential class of pdfs of 
the continuous (discrete) type. (Here, k is the number of 
parameters) 

))x(t)(wexp()(c)x(h);x(f
k

1j

jj


 



REGULAR CASE OF THE EXPONENTIAL FAMILY 

• We have a regular case of the exponential class of 
pdfs of the continuous type if 

a) Range of X does not depend on . 

b) c() ≥ 0, w1(),…, wk() are real valued functions of 
  for . 

c) h(x) ≥ 0, t1(x),…, tk(x) are real valued functions of x. 

If the range of X depends on , then it is called irregular 

exponential class or range-dependent exponential class.   



EXAMPLE 

X~Bin(n,p), where n is known. Is this pdf a member of 

exponential class of pdfs?  

 

Binomial family is a member of exponential family of distributions. 
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EXAMPLE 

 X~Cauchy(1,). Is this pdf a member of exponential 
class of pdfs?  

 

Cauchy is not a member of exponential family. 
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EXPONENTIAL CLASS and CSS 

• Random Sample from Regular Exponential Class 

is a css for . 

If Y is an UE of , Y is the UMVUE of .  
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EXAMPLE 
Let X1,X2,…~Bin(1,p), i.e., Ber(p).  
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This family is a member of exponential family of 
distributions. 

is a CSS for p. 

is UE of p and a function of CSS. 

is UMVUE of p. 
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EXAMPLES 

 X~N(,2) where both  and 2 is unknown. Find a 
css for  and 2 . 

 

 

 

 

 

 

 

 

 

      are css for  and 2  
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THE SCORE 

• The score of the family                       is the random 
variable  

 

 

 

  

 

 measures the “sensitivity” of               as a function 
of the parameter     .  
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Example 

• Consider the normal distribution 

 

 

 

 

 

 

• clearly, 

• and 
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THE SCORE - VECTOR FORM 
 

• In case where                              is a vector, the 
score      is the vector whose     ith component is 
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• Fisher information (about     ), is the variance of the score 

 

 

• It is designed to provide a measure of how much information 
the parametric probability law             carries about the 

• The properties: 

– The larger the sensitivity of                to changes in      , the 
larger should be the information 

– The information carried by the combined law                           
should be the sum of those carried by                and 

– The information should be insensitive to the sign of the 
change in      and  preferably positive. 

– The information should be a deterministic quantity 
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FISHER INFORMATION 
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Example 

• Consider a random variable 2~ ( , )X N  
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• Whenever                     is a vector,  Fisher information 
is the  matrix                                where  
 

 

 

 

• Let                       be i.i.d. random variables                    . 
The score of               is the sum of the individual 
scores. 
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• Based on      i.i.d. samples, the Fisher information about    
is 

 

 

 

 

 

 

 

• Thus, the Fisher information is additive w.r.t. i.i.d. random 
variables. 
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Example 

• If                             are i.i.d.                           , the score 
is 
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CRAMER-RAO LOWER BOUND (CRLB) 

• Theorem: Let     be an unbiased estimator for    . Then 

 

 

 

• Proof: Using                 we have: 
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• So, 

• By the Cauchy-Schwarz inequality 

 

 

 

 

 

• Therefore, 

 

 

• For a biased estimator we have: 
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CRAMER-RAO LOWER BOUND (CRLB) GENERAL 

• Let X1,X2,…,Xn be sample random variables. 

• The Fisher Information in the random sample is   

• Range of X does not depend on . 

• Y=U(X1,X2,…,Xn): a statistic; doesnot contain . 

• Let E(Y)=m(). 
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• Let                           be i.i.d.                       .From previous example 

 

• Now let                       be an (unbiased) estimator for    .  

 

 

 

 

 

 

• So                              matches the Cramer-Rao lower bound.  
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Example 
• Suppose  ~ Binomial( , )x n p
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ˆAny unbiased estimator of p is efficient if satisfies
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LIMITING DISTRIBUTION OF MLEs 

•    : MLE of  

• X1,X2,…,Xn is a random sample. 
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EFFICIENT ESTIMATOR 

•    is an efficient estimator (EE) of  if  

–      is UE of , and, 

– Var(   )=CRLB 

• Y is an efficient estimator (EE) of its expectation, 
m(), if its variance reaches the CRLB. 

• An EE of m() may not exist. 

• The EE of m(), if exists, is unique. 

• The EE of m() is the unique MVUE of m(). 
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ASYMPTOTIC EFFICIENT ESTIMATOR 

• Y is an asymptotic EE of m() if  
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