
LECTURE 10 

SOME PROPERTIES OF ESTIMATORS 



ESTIMATOR 
 Assume that we have a sample (x1,x2,…,xn)  from a 

given population. All parameters of the population  
are known except some parameter . We want to 
determine from the given observations unknown 
parameter - . In other words we want to 
determine a number or range of numbers from 
the observations that can be taken as a value of .  

 Estimator – is a  method of estimation. 
 Estimate – is a result of an estimator 
 Point estimation – as the name suggests is the 

estimation of the population parameter with one 
number. 

 



PROPERTIES OF ESTIMATORS 

 Since estimator gives rise an estimate that depends on 
sample points (x1,x2,…,xn) estimate is a function of 
sample points. Sample points are random variable 
therefore estimate is random variable and has 
probability distribution. We want that estimator to have 
several desirable properties.  

 Goal:  

– Check how good are these estimator(s). Or are they 
good at all? 

– If more than one good estimator is available, which 
one is better? 

 

 



1. UNBIASEDNESS 

 If an estimator   estimates  then difference 
between them (   - ) is called the estimation 
error. Bias of the estimator is defined as the 
expectation value of this difference 

Bias =E(    -)=E(   )-  

 If the bias is equal to zero then the 
estimation is called unbiased. 

 Therefore,  
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Example 

 The sample mean is an unbiased estimator: 
 
 
 
 
 
 Here we used the fact that expectation and 

summation can change order and the 
expectation of each sample point is equal to 
the population mean.  
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Example 

  Given sample of size n from the population with unknown mean ( ) and 
variance (2) we estimate mean as we already know and variance (intuitively) 
as: 

 

 

 What is the bias of this estimator?  
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• Sample variance is not an unbiased estimator for the 
population variance. That is why when mean and 
variance are unknown the following equation is used 
for sample variance: 
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• An estimator     is an Asymptotically unbiased  of 
the unknown parameter , if 
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1.2 ASYMPTOTICALLY UNBIASEDNESS 



Example 

  Given sample of size n from the population remember 
the biased estimator of sample variance 

 
 
 
 As    then,  
 
   is a asymptotically unbiased estimator of population variance. 
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2. CONSISTENCY 

 We would like that estimator stays as close as 
possible to the parameter it estimates as sample size 
increases.  

 An estimator   which converges in probability to an 
unknown parameter  for all  is called a 
consistent  estimator of . 
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 The property of consistency is a limiting property. It 
does not require any behaviour of the estimator for a 
finite sample size.  

  

 If there is one consistent estimator then you can 
construct infinitely many others. For example if   is 
consistent then     n/(n-1) is also consistent.  
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Example 

For a r.s. of size n then, we know that sample mean is 
an unbiased estimator (UE) of population mean,   

 E X X  is an UE of .  

In addition from WLLN,  
 
 
As a result, 

pX 

X  is a consistent estimator (CE) of .



3. MEAN SQUARE ERROR  

 Expectation value of the square of the differences 
between estimator and the expectation of the estimator 
is called its variance: 

 

  

 The difference between estimator and the parameter is 
error of the estimation. Expectation value of this error is 
bias. Expectation value of square of this error is called 
mean square error (mse). 
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 It can be expressed by the bias and the variance of 
the estimator: 

 

 

  

 MSE is equal to square of the estimator’s bias plus 
variance of the estimator. If the bias is 0 then MSE 
is equal to the variance. In ideal world we would 
like to have minimum variance unbiased estimator. 

 If                  is smaller,      is a better estimator of . 
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Example 

• If X1, . . . , Xn ∼ Uni(0, θ),  To find the MSE of an 
estimator of population mean, we need the mean 
and variance of sample mean. We know that  

 

• Then, 

2

i iE[X ] = /2 and Var[X ]= /12. 
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• Suppose we have one more estimator   

• Then, 

 

 

 

 

• As a result       has a smaller MSE than  
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4. MEAN SQUARED ERROR CONSISTENCY 

 If we collect a large number of observations, we 
hope we have a lot of information about any 
unknown parameter θ, and thus we hope we can 
construct an estimator with a very small MSE.   is 
called mean squared error consistent if 

Theorem:     is consistent in MSE iff 

i) Var(   )0 as n.  
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Example 

• If X1, . . . , Xn ∼ Uni(0, θ), We know that 

 

 

 

 

 

• Then, 
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• Suppose we have one more estimator        we 
know that       

 

 

 

 

 

 

 

• As a result       is consistent in MSE but      is not.  

(x)=2x
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Example 

  X~Exp(), >0. For a r.s of size n, consider the 
following estimators of , and discuss their 
bias and consistency. 

  

 

 

 Which estimator is better? 
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5. EFFICIENCY 
• Assume we have two unbiased estimators of   , i.e. 

 

 

• If          with strict inequality than       is 
more efficient than  

• The efficiency of an unbiased estimator is defined as: 

 

 

 

• An estimator is said to be efficient if in the class of 
unbiased estimators it has minimum variance. 
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Example 

• Let 

 

• Then 

• Both estimators are unbiased. 
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6. SUFFICIENCY 
• An estimator is sufficient if it uses all the sample information.  

• A function U of the sample values of a sample x, i.e. 

  Y=U(X1, X2,…,Xn ) is a statistic that is sufficient  for the 
parameter    if  the conditional distribution of the sample 
random variables h(x1,x2,…,xn|y) does not  depend on , i.e.  

• What does it mean in practice? 

– If Y is sufficient for   then no more information about  
than what is contained in Y can be obtained from the 
sample. 

– It is enough to work with Y when deriving point estimates of 
 

 



• The conditional distribution of sample rvs given the 
value of y of Y, is defined as 
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• If Y is a ss for , then 
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ss for  may include y or constant. 

Not depend on   for every given y. 



Example 
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NEYMAN’S FACTORIZATION THEOREM 

• Y is a sufficient statistic for  iff the likelihood 
function can be written 

     1 2 1 2
; , , ,

n
L k y k x x x 

where k1 and k2 are non-negative functions. 

The likelihood function Does not depend on xi  

except through y 

Not depend on  (also in 
the range of xi.) 



ANCILLARY STATISTIC 

• A statistic S(X) whose distribution does not depend on 
the parameter   is called an ancillary statistic. 

 

• Unlike a ss, an ancillary statistic contains no 
information about . 



Example 
Let Xi~Unif(θ,θ+1) for i=1,2,…,n 

The joint pdf and cdf 

 

 

The joint pdf of X(1) and X(n) 

 

 

Then, the pdf for range R=X(n)-X(1) is 

 

 

 As a result R=X(n)-X(1) is an ancillary statistic because its pdf 
does not depend on θ. 
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Example 

• Suppose X  Exp( ) 
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7. MINIMAL SUFFICIENT STATISTICS 

• A ss U(X) is called minimal ss if, for any other ss U’(X), 
U(x) is a function of U’(x). 

 

• Theorem: Let f(x;) be the pmf or pdf of a sample X1, 
X2,…,Xn. Suppose there exist a function U(x) such 
that, for two sample points x1,x2,…,xn and y1,y2,…,yn, 
the ratio 

 

 

   is constant with respect to  iff U(x)=U(y). Then, U(X) 

 is a minimal sufficient statistic for . 
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RAO-BLACKWELL THEOREM 

• Let     be an estimator of θ with                       for all θ.  
Suppose that T is sufficient for θ, and let                       

 

• Then for all θ,  

 

 

• The inequality is strict unless      is a function of T.  

• The following theorem says that if we want an estimator 
with small MSE we can confine our search to estimators 
which are functions of the sufficient statistic 

̂
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Example  
• Suppose 

 
 
 
 

• Then  is an sufficient statistic.   
• Suppose we have an unbiased estimator   from 

Rao-Blackwell Theorem 
 
 
 

 
• By the fact thatX1,... ,Xn are IID, every term within the 

sum on the l.h.s. must be the same, and hence equal to 
t/n.  
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8. THE MINIMUM VARIANCE UNBIASED 
ESTIMATOR 

• Rao-Blackwell Theorem: If     is an unbiased estimator 
of , and T is a ss for , then                            is 

– an UE of , i.e.,                                             and  

– the MVUE of . 

 

̂
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9. COMPLETENESS 

• Let {f(x; ), } be a family of pdfs (or pmfs) and U(x) 
(sufficient) be an arbitrary function of x not depending on . If 

 

   requires that the function itself equal to 0 for all possible 
values of x; then we say that this family is a complete family of 
pdfs (or pmfs). 

   0 for all E U X  

    0 for all 0 for all .E U X U x x   

i.e., the only unbiased estimator of 0 is 0 itself. 



Example  
• Suppose 
• The statistic       has a pdf  
• Suppose there is u(y) any fnc of the sufficient statistic y. 

 
 

 
• Since  can not be 0 E(u(y))=0 if 

 
 

 
• However, if such an infinite series converges to zero for all > 

0, then each of the coefficients must equal zero. Then, 
u(0)=u(1)=u(2)=…=0. Then the family  is complete.   
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10. COMPLETE AND SUFFICIENT STATISTICS 

• Y is a complete and sufficient statistic (css) for  if Y 
is a ss for  and the family 

is complete. 

The pdf of Y. 

1) Y is a ss for . 

2) u(Y) is an arbitrary function of Y. 
    E(u(Y))=0 for all  implies that u(y)=0  
    for all possible Y=y. 

( ; )f y 



BASU THEOREM 
• If T(X) is a complete and minimal sufficient statistic, 

then T(X) is independent of every ancillary statistic. 

• In other words in a complete family, every ancillary 
statistic is independent of the minimal sufficient 
statistic. 

• Basu’s Theorem is useful for deducing independence 
of two statistics: 

• No need to determine their joint distribution 

• Needs showing completeness 

 



Example 

 

• Let T=X1+ X2 and U=X1 - X2 

• X1, X2~N(,2), independent, 2 known.  

• We know that T is a complete minimal ss.  

• U~N(0, 2)  distribution free of  

 T and U are independent by Basu’s Theorem 

 



LEHMANN-SCHEFFE THEOREM 

• Let Y be a css for . If there is a function Y which is an 
UE of , then the function is the Uniform Minimum 
Variance Unbiased Estimator (UMVUE) of . 

• Y css for . 

• T(y)=fn(y) and E[T(Y)]=. 

• T(Y) is the UMVUE of .  

• So, it is the best estimator of . 

 

 

 

 



Example  
• Suppose 

• The statistic       has a pdf  

 

 

 

• Suppose there is u(y) any fnc of the sufficient statistic y. 

 

 

• Then the family  is complete. As a result y is css. 
Suppose  

• Then since    is unbiased estimator of     and a function of css 
y then it is UMVUE (the best estimator).    
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Note 

• The estimator found by Rao-Blackwell Thm 
may not be unique. But, the estimator found 
by Lehmann-Scheffe Thm is unique.  


