IAM 530
 ELEMENTS OF PROBABILITY AND STATISTICS

LECTURE 3-RANDOM VARIABLES

VARIABLE

- Studying the behavior of random variables, and more importantly functions of random variables is essential for both the theory and practice of statistics.
Variable: A characteristic of population or sample that is of interest for us.
Random Variable: A function defined on the sample space S that associates a real number with each outcome in S. In other words, a numerical value to each outcome of a particular experiment.
- For each element of an experiment's sample space, the random variable can take on exactly one value

TYPES OF RANDOM VARIABLES

We will start with univariate random variables.

- Discrete Random Variable: A random variable is called discrete if its range consists of a countable (possibly infinite) number of elements.
- Continuous Random Variable: A random variable is called continuous if it can take on any value along a continuum (but may be reported "discretely"). In other words, its outcome can be any value in an interval of the real number line.

Note:

- Random Variables are denoted by upper case letters (X)
- Individual outcomes for RV are denoted by lower case letters (x)

DISCRETE RANDOM VARIABLES

EXAMPLES

- A random variable which takes on values in $\{0,1\}$ is known as a Bernoulli random variable.
- Discrete Uniform distribution:
$P(X=x)=\frac{1}{N} ; x=1,2, \ldots, N ; \quad N=1,2, \ldots$
- Throw a fair die. $P(X=1)=. .=P(X=6)=1 / 6$

DISCRETE RANDOM VARIABLES

- Probability Distribution: Table, Graph, or Formula that describes values a random variable can take on, and its corresponding probability (discrete random variable) or density (continuous random variable).
- Discrete Probability Distribution: Assigns probabilities (masses) to the individual outcomes.

PROBABILITY MASS FUNCTION (PMF)

- Probability Mass Function

$$
-0 \leq p_{i} \leq 1 \text { and } \sum_{i} p_{i}=1
$$

- Probability :

$$
P\left(X=x_{i}\right)=p_{i}
$$

Example

Consider tossing three fair coins.

- Let $X=$ number of heads observed.
- $\mathrm{S}=\{\mathrm{TTT}, \mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}, \mathrm{THH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{HHH}\}$
- $P(X=0)=P(X=3)=1 / 8 ; P(X=1)=P(X=2)=3 / 8$

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

Cumulative Distribution Function (CDF):
$F(y)=P(Y \leq y)$
$F(b)=P(Y \leq b)=\sum_{y=-\infty}^{b} p(y)$
$F(-\infty)=0 \quad F(\infty)=1$
$F(y)$ is monotonically increasing in y

Example

$X=$ Sum of the up faces of the two die. Table gives value of y for all elements in S

$\mathbf{1}^{\text {st } \backslash \mathbf{2}^{\text {nd }}}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	$\mathbf{2}$	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

PMF and CDF

y	$p(y)$	$F(y)$
2	$1 / 36$	$1 / 36$
3	$2 / 36$	$3 / 36$
4	$3 / 36$	$6 / 36$
5	$4 / 36$	$10 / 36$
6	$5 / 36$	$15 / 36$
7	$6 / 36$	$21 / 36$
8	$5 / 36$	$26 / 36$
9	$4 / 36$	$30 / 36$
10	$3 / 36$	$33 / 36$
11	$2 / 36$	$35 / 36$
12	$1 / 36$	$36 / 36$

$$
\begin{aligned}
& p(y)=\frac{\# \text { of ways } 2 \text { die can sum to } y}{\# \text { of ways } 2 \text { die can result in }} \\
& F(y)=\sum_{t=2}^{y} p(t)
\end{aligned}
$$

PMF-Graph

Dice Rolling Probability Function

Example 2

- Machine Breakdowns
- Sample space : $S=\{$ electrical, mechanical,misuse $\}$
- Each of these failures may be associated with a repair cost
- State space : $\{50,200,350\}$
- Cost is a random variable :50, 200, and 350
$-P($ cost $=50)=0.3, P($ cost $=200)=0.2$,
$P($ cost $=350)=0.5$
$-0.3+0.2+0.5=1$

x_{i}	50	200	350
p_{i}	0.3	0.2	0.5

- Cumulative Distribution Function

$$
\begin{aligned}
& -\infty<x<50 \Rightarrow F(x)=P(\operatorname{cost} \leq x)=0 \\
& 50 \leq x<200 \Rightarrow F(x)=P(\operatorname{cost} \leq x)=0.3 \\
& 200 \leq x<350 \Rightarrow F(x)=P(\cos \leq x)=0.3+0.2=0.5 \\
& 350 \leq x<\infty \Rightarrow F(x)=P(\cos \leq x)=0.3+0.2+0.5=1.0
\end{aligned}
$$

CONTINUOUS RANDOM VARIABLES

- When sample space is uncountable (continuous)
- For a continuous random variable $P(X=x)=0$.

Examples:

- Continuous Uniform(a,b)

$$
f(X)=\frac{1}{b-a} \quad a \leq x \leq b
$$

- Suppose that the random variable X is the diameter of a randomly chosen cylinder manufactured by the company.

PROBABILITY DENSITY FUNCTION (PDF)

- Probability Density Function
- Probabilistic properties of a continuous random variable

$$
\begin{aligned}
& f(x) \geq 0 \\
& \int_{\text {statespace }} f(x) d x=1
\end{aligned}
$$

Example

- Suppose that the diameter of a metal cylinder has a p.d.f

$$
\begin{aligned}
& f(x)=1.5-6(x-50.2)^{2} \text { for } 49.5 \leq x \leq 50.5 \\
& f(x)=0, \text { elsewhere }
\end{aligned}
$$

- This is a valid p.d.f.

$$
\begin{aligned}
\int_{49.5}^{50.5}\left(1.5-6(x-50.0)^{2}\right) d x= & {\left[1.5 x-2(x-50.0)^{3}\right]_{49.5}^{50.5} } \\
= & {\left[1.5 \times 50.5-2(50.5-50.0)^{3}\right] } \\
& \quad-\left[1.5 \times 49.5-2(49.5-50.0)^{3}\right] \\
= & 75.5-74.5=1.0
\end{aligned}
$$

- The probability that a metal cylinder has a diameter between 49.8 and 50.1 mm can be calculated to be

$$
\begin{aligned}
\int_{49.8}^{50.1}\left(1.5-6(x-50.0)^{2}\right) d x= & {\left[1.5 x-2(x-50.0)^{3}\right]_{49.8}^{50.1} } \\
= & {\left[1.5 \times 50.1-2(50.1-50.0)^{3}\right] } \\
& \quad-\left[1.5 \times 49.8-2(49.8-50.0)^{3}\right] \\
= & 75.148-74.716=0.432
\end{aligned}
$$

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

$$
\begin{aligned}
& \cdot F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y \\
& \cdot f(x)=\frac{d F(x)}{d x} \\
& \cdot P(a<X \leq b)=P(X \leq b)-P(X \leq a) \\
& =F(b)-F(a) \\
& \cdot P(a \leq X \leq b)=P(a<X \leq b)
\end{aligned}
$$

$$
\begin{aligned}
F(x)=P(X \leq x) & =\int_{49.5}^{x}\left(1.5-6(y-50.0)^{2}\right) d y \\
& =\left[1.5 y-2(y-50.0)^{3}\right]_{49.5}^{x} \\
& =\left[1.5 x-2(x-50.0)^{3}\right]-\left[1.5 \times 49.5-2(49.5-50.0)^{3}\right] \\
& =1.5 x-2(x-50.0)^{3}-74.5
\end{aligned}
$$

$$
\begin{aligned}
P(49.7 \leq X \leq 50.0)= & F(50.0)-F(49.7) \\
= & \left(1.5 \times 50.0-2(50.0-50.0)^{3}-74.5\right) \\
& -\left(1.5 \times 49.7-2(49.7-50.0)^{3}-74.5\right) \\
= & 0.5-0.104=0.396
\end{aligned}
$$

Example

- Suppose cdf of the random variable X is given as: $F(\mathrm{x})=4 \mathrm{x}^{3}-6 x^{2}+3 x$
Find the pdf for X.

$$
\frac{d F(\mathrm{x})}{d x}=12 x^{2}-12 x+3=12\left(x^{2}-x+\frac{1}{4}\right)=12\left(\mathrm{x}-\frac{1}{2}\right)^{2}
$$

THE EXPECTED VALUE

Let X be a rv with pdf $f_{X}(x)$ and $g(X)$ be a function of X. Then, the expected value (or the mean or the mathematical expectation) of $g(X)$

$$
E \quad g \quad X=\left\{\begin{array}{llll}
\sum_{x} g & x & f_{X} & x, \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} g & x & f_{X} & x
\end{array}\right] x, \text { if } X \text { is continuous }
$$

providing the sum or the integral exists, i.e., $-\infty<E[g(X)]<\infty$.

EXPECTED VALUE (MEAN) AND VARIANCE OF A DISCERETE RANDOM VARIABLE

- Given a discrete random variable X with values x_{i}, that occur with probabilities $p\left(x_{i}\right)$, the population mean of X is

$$
E(X)=\mu=\sum_{\text {all } x_{i}} x_{i} \cdot p\left(x_{i}\right)
$$

- Let X be a discrete random variable with possible values x_{i} that occur with probabilities $p\left(x_{i}\right)$, and let $E\left(x_{i}\right)=\mu$. The variance of X is defined by

$$
V(X)=\sigma^{2}=E\left[(X-\mu)^{2}\right]=\sum_{\text {all } x_{i}}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)
$$

The $s \tan$ dard deviation is

$$
\sigma=\sqrt{\sigma^{2}}
$$

Mean: $E(X)=\mu$

$$
\begin{aligned}
& \quad V(X)=\sigma^{2}=E\left[(X-E(X))^{2}\right]=E\left[(X-\mu)^{2}\right]= \\
& =\sum_{\text {all } x}(x-\mu)^{2} p(x)=\sum_{\text {ail } x} x^{2}-2 x \mu+\mu^{2} p(x)= \\
& =\sum_{\text {allx }} x^{2} p(x)-2 \mu \sum_{\text {all } x} x p(x)+\mu^{2} \sum_{\text {all }} p(x)= \\
& =E\left[X^{2}\right]-2 \mu(\mu)+\mu^{2}(1)=E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

Example - Rolling 2 Dice

Example 2

- The pmf for the number of defective items in a lot is as follows

$$
p(x)=\left\{\begin{array}{l}
0.35, x=0 \\
0.39, x=1 \\
0.19, x=2 \\
0.06, x=3 \\
0.01, x=4
\end{array}\right.
$$

Find the expected number and the variance of defective items.

Results: $E(X)=0.99, \operatorname{Var}(X)=0.8699$

EXPECTED VALUE (MEAN) AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE

- The expected value or mean value of a continuous random variable X with $\operatorname{pdf} f(x)$ is

$$
\mu=E(X)=\int_{\text {all } x} x f(x) d x
$$

- The variance of a continuous random variable X with $\operatorname{pdf} f(x)$ is

$$
\begin{aligned}
\sigma^{2} & =\operatorname{Var}(X)=E(X-\mu)^{2}=\int_{\text {all } x}(x-\mu)^{2} f(x) d x \\
& =E\left(X^{2}\right)-\mu^{2}=\int_{\text {all } x}(x)^{2} f(x) d x-\mu^{2}
\end{aligned}
$$

Example

- In the flight time example, suppose the probability density function for X is

$$
f(x)=\frac{4}{3}, \quad 0 \leq x \leq 0.5 ; \quad f(x)=\frac{2}{3}, \quad 0.5<x \leq 1 .
$$

- Then, the expected value of the random variable X is

$$
\begin{aligned}
E(X) & =\int_{0}^{1} x f(x) d x=\int_{0}^{0.5} x \cdot \frac{4}{3} d x+\int_{0.5}^{1} x \cdot \frac{2}{3} d x=\left.\frac{x^{2}}{2} \cdot \frac{4}{3}\right|_{0} ^{0.5}+\left.\frac{x^{2}}{2} \cdot \frac{2}{3}\right|_{0.5} ^{1} \\
& =\left(\frac{0.5^{2}}{2} \cdot \frac{4}{3}-\frac{0^{2}}{2} \cdot \frac{4}{3}\right)+\left(\frac{1^{2}}{2} \cdot \frac{2}{3}-\frac{0.5^{2}}{2} \cdot \frac{2}{3}\right)=\frac{5}{12}
\end{aligned}
$$

- Variance

$$
\begin{aligned}
& \operatorname{Var}(X)=E \quad X-E(X)^{2}=\int_{0}^{1}\left(x-\frac{5}{12}\right)^{2} f(x) d x \\
& =\int_{0}^{0.5}\left(x-\frac{5}{12}\right)^{2} \cdot \frac{4}{3} d x+\int_{0.5}^{1}\left(x-\frac{5}{12}\right)^{2} \cdot \frac{2}{3} d x \\
& =\left.\left(\frac{x^{3}}{3}-\frac{5 x^{2}}{12}+\frac{25 x}{144}\right) \cdot \frac{4}{3}\right|_{0} ^{0.5}+\left.\left(\frac{x^{3}}{3}-\frac{5 x^{2}}{12}+\frac{25 x}{144}\right) \cdot \frac{2}{3}\right|_{0.5} ^{1}=\frac{11}{144}
\end{aligned}
$$

Example 2

- Let X be a random variable. Its pdf is

$$
f(x)=2(1-x), 0<x<1
$$

Find $E(X)$ and $\operatorname{Var}(X)$.

CHEBYSHEV'S INEQUALITY

- Chebyshev's Inequality
- If a random variable has a mean μ and a variance σ^{2}, then

$$
\begin{aligned}
& P(\mu-c \sigma \leq X \leq \mu+c \sigma) \geq 1-\frac{1}{c^{2}} \\
& \text { for } c \geq 1
\end{aligned}
$$

- For example, taking $\mathrm{c}=2$ gives

$$
P(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \geq 1-\frac{1}{2^{2}}=0.75
$$

- Proof

$$
\begin{aligned}
\sigma^{2} & =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \geq \int_{|x-\mu|>c \sigma}(x-\mu)^{2} f(x) d x \geq c^{2} \sigma^{2} \int_{|x-\mu|>c \sigma} f(x) d x . \\
& \Rightarrow P(|x-\mu|>c \sigma) \leq 1 / c^{2} \\
& \Rightarrow P(|x-\mu| \leq c \sigma)=1-P(|x-\mu|>c \sigma) \geq 1-1 / c^{2}
\end{aligned}
$$

LAWS OF EXPECTED VALUE AND VARIANCE

Let X be a random variable and c be a constant.

Laws of Expected Value

- $\mathrm{E}(\mathrm{c})=\mathrm{c}$
- $\mathrm{E}(X+\mathrm{c})=\mathrm{E}(X)+\mathrm{c}$
- $\mathrm{E}(\mathrm{c} X)=\mathrm{cE}(X)$

Laws of
Variance

- $\mathrm{V}(\mathrm{c})=0$
- $\mathrm{V}(X+\mathrm{c})=\mathrm{V}(X)$
- $V(c X)=c^{2} V(X)$

LAWS OF EXPECTED VALUE

- Let X be a random variable and a, b, and c be constants. Then, for any two functions $g_{l}(x)$ and $g_{2}(x)$ whose expectations exist,
a) $E a g_{1} X+b g_{2} X+c=a E g_{1} X+b E g_{2} X+c$ b) If $g_{1} x \geq 0$ for all x, then $E g_{1} X \geq 0$.
c) If $g_{1} x \leq g_{2} x$ for all x, then $E g_{1} x \leq E g_{2} x$.
d) If $a \leq g_{1} x \leq b$ for all x, then $a \leq E g_{1} X \leq b$

LAWS OF EXPECTED VALUE (Cont.)

$$
E\left(\sum_{i=1}^{k} a_{i} X_{i}\right)=\sum_{i=1}^{k} a_{i} E \quad X_{i}
$$

If X and Y are independent,

$$
E\left\|\otimes T \mathbb{N}_{=}=E\right\| \otimes E \|
$$

THE COVARIANCE

- The covariance between two real-valued random variables X and Y, is

$$
\begin{aligned}
\operatorname{Cov}(X, Y)= & E((X-E(X)) .(Y-E(Y)))= \\
= & E(X . Y-E(X) Y-E(Y) X+E(X) E(Y)) \\
= & E(X . Y)-E(X) E(Y)-E(Y) E(X)+E(Y) E(X) \\
& =E(X . Y)-E(Y) E(X)
\end{aligned}
$$

- $\operatorname{Cov}(X, Y)$ can be negative, zero, or positive
- We can show $\operatorname{Cov}(X, Y)$ as $\sigma_{X, Y}$
- Random variables with covariance is zero are called uncorrelated or independent
- If the two variables move in the same direction, (both increase or both decrease), the covariance is a large positive number.
- If the two variables move in opposite directions, (one increases when the other one decreases), the covariance is a large negative number.
- If the two variables are unrelated, the covariance will be close to zero.

Example

$\mathbf{*} \mathbf{~}\left(\mathbf{X}_{\mathbf{i}} \mathbf{Y}_{\mathbf{i}}\right)$	Economic condition	Passive Fund \mathbf{X}	Aggressive Fund \mathbf{Y}
		Investment	
0.2	Recession	-25	-200
0.3	Stable Economy	+50	+60
	Expanding Economy	+100	+350

$$
\begin{aligned}
& E(X)=\mu_{X}=(-25)(.2)+(50)(.5)+(100)(.3)=50 \\
& E(Y)=\mu_{Y}=(-200)(.2)+(60)(.5)+(350)(.3)=95
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{X, Y}= & (-25-50)(-200-95)(.2)+(50-50)(60-95)(.5) \\
& +(100-50)(350-95)(.3) \\
= & 8250
\end{aligned}
$$

Properties

- If X and Y are real-valued random variables and \boldsymbol{a} and \boldsymbol{b} are constants ("constant" in this context means non-random), then the following facts are a consequence of the definition of covariance:

$$
\begin{aligned}
& \operatorname{Cov}(X, a)=0 \\
& \operatorname{Cov}(X, X)=\operatorname{Var}(X) \\
& \operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X) \\
& \operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y) \\
& \operatorname{Cov}(X+a, Y+b)=\operatorname{Cov}(X, Y) \\
& \operatorname{Cov}(X+Y, X)=\operatorname{Cov}(X, X)+\operatorname{Cov}(Y, X)
\end{aligned}
$$

If X and Y are independent,

$$
\operatorname{Cov}(X, Y \equiv 0
$$

The reverse is usually not correct! It is only correct under normal distribution.

$$
\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)
$$

If X_{1} and X_{2} are independent, so that then

$$
\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)
$$

MOMENTS

- Moments:

$$
\begin{aligned}
& \mu_{k}^{*}=E\left[X^{k}\right] \rightarrow \text { the } k \text {-th moment } \\
& \mu_{k}=E X-\mu^{k} \rightarrow \text { the } k \text {-th central moment }
\end{aligned}
$$

- Population Mean: $\mu=\mathrm{E}(X)$
- Population Variance:

$$
\sigma^{2}=E \quad X-\mu^{2}=E \quad X^{2}-\mu^{2} \geq 0
$$

SKEWNESS

- Measure of lack of symmetry in the pdf.

$$
\text { Skewness }=\frac{E X-\mu^{3}}{\sigma^{3}}=\frac{\mu_{3}}{\mu_{2}^{3 / 2}}
$$

If the distribution of X is symmetric around its mean μ,

$$
\mu_{3}=0 \rightarrow \text { Skewness=0 }
$$

[^0]
KURTOSIS

- Measure of the peakedness of the pdf. Describes the shape of the distribution.

$$
\text { Kurtosis }=\frac{E X-\mu^{4}}{\sigma^{4}}=\frac{\mu_{4}}{\mu_{2}^{2}}
$$

Kurtosis=3 \rightarrow Normal
Kurtosis >3 \rightarrow Leptokurtic
(peaked and fat tails)
Kurtosis $<3 \rightarrow$ Platykurtic (less peaked and thinner tails)

QUANTILES OF RANDOM VARIABLES

- Quantiles of Random variables
- The $\mathrm{p}^{\text {th }}$ quantile of a random variable $\mathrm{X} F(x)=p$
- A probability of that the random variable takes a value less than the $\mathrm{p}^{\text {th }}$ quantile
- Upper quartile
- The 75th percentile of the distribution
- Lower quartile
- The 25th percentile of the distribution
- Interquartile range
- The distance between the two quartiles
- Example
$F(x)=1.5 x-2(x-50.0)^{3}-74.5$ for $49.5 \leq x \leq 50.5$
- Upper quartile : $F(x)=0.75 \quad x=50.17$
- Lower quartile : $F(x)=0.25 \quad x=49.83$
- Interquartile range : $50.17-49.83=0.34$

CENTRAL TENDENCY MEASURES

- In statistics, the term central tendency relates to the way in which quantitative data tend to cluster around a "central value".
- A measure of central tendency is any of a number of ways of specifying this "central value."
- There are three important descriptive statistics that gives measures of the central tendency of a variable:
- The Mean
- The Median
- The Mode

THE MEAN

- The arithmetic mean is the most commonly-used type of average.
- In mathematics and statistics, the arithmetic mean (or simply the mean) of a list of numbers is the sum of all numbers in the list divided by the number of items in the list.
- If the list is a statistical population, then the mean of that population is called a population mean.
- If the list is a statistical sample, we call the resulting statistic a sample mean.
- If we denote a set of data by $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then the sample mean is typically denoted with a horizontal bar over the variable (\bar{x})
- The Greek letter μ is used to denote the arithmetic mean of an entire population.

THE SAMPLE MEAN

- In mathematical notation, the sample mean of a set of data denoted as $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is given by

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)
$$

- Suppose daily asset price are:
- 67.05, 66.89, 67.45, 68.39, 67.45,70.10, 68.39

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{7}(67.05+66.89+\ldots+68.39)=67.96
$$

THE MEDIAN

- In statistics, a median is described as the numeric value separating the higher half of a sample or population from the lower half.
- The median of a finite list of numbers can be found by arranging all the observations from lowest value to highest value and picking the middle one.
- If there is an even number of observations, then there is no single middle value, so we take the mean of the two middle values.
- Organize the price data in the previous example $67.05,66.89,67.45,67.45,68.39,68.39,70.10$
- The median of this price series is $\mathbf{6 7 . 4 5}$

THE MODE

- In statistics, the mode is the value that occurs the most frequently in a data set.
- The mode is not necessarily unique, since the same maximum frequency may be attained at different values.
- Organize the price data in the previous example in ascending order

$$
67.05,66.89,67.45,67.45,68.39,68.39,70.10
$$

- There are two modes in the given price data - 67.45 and 68.39
- The sample price dataset may be said to be bimodal
- A population or sample data may be unimodal, bimodal, or multimodal

RELATIONSHIP AMONG MEAN, MEDIAN, AND MODE

- If a distribution is from a bell shaped symmetrical one, then the mean, median and mode coincide

- If a distribution is non symmetrical, and skewed to the left or to the right, the three measures differ.

Mode < Median < Mean
A positively skewed distribution
("skewed to the right")

Median
Mean < Median < Mode

A negatively skewed distribution
("skewed to the left")

Median

STATISTICAL DISPERSION

- In statistics, statistical dispersion (also called statistical variability or variation) is the variability or spread in a variable or probability distribution.
- Common measures of statistical dispersion are
- The Variance, and
- The Standard Deviation
- Dispersion is contrasted with location or central tendency, and together they are the most used properties of distributions

THE VARIANCE

- In statistics, the variance of a random variable or distribution is the expected (mean) value of the square of the deviation of that variable from its expected value or mean.
- Thus the variance is a measure of the amount of variation within the values of that variable, taking account of all possible values and their probabilities.
- If a random variable X has the expected (mean) value $E[X]=\mu$, then the variance of X can be given by:

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=\sigma_{x}^{2}
$$

THE VARIANCE

The above definition of variance encompasses random variables that are discrete or continuous. It can be expanded as follows:

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =E\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2} \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

THE SAMPLE VARIANCE

- If we have a series of n measurements of a random variable X as X_{i}, where $i=1,2, \ldots, n$, then the sample variance can be calculated as

$$
S_{x}^{2}=\frac{\sum_{i=1}^{n} X_{i}-\bar{X}^{2}}{n-1}
$$

The denominator, ($n-1$) is known as the degrees of freedom. Intuitively, only n-1 observation values are free to vary, one is predetermined by mean. When $n=1$ the variance of a single sample is obviously zero

THE SAMPLE VARIANCE

- For the hypothetical price data $67.05,66.89,67.45$, 67.45, 68.39, 68.39, 70.10, the sample variance can be calculated as

$$
\begin{aligned}
S_{x}^{2} & =\frac{\sum_{i=1}^{n} X_{i}-\bar{X}^{2}}{n-1} \\
& =\frac{1}{7-1}\left[67.05-67.96^{2}+\ldots+70.10-67.96^{2}\right] \\
& =1.24
\end{aligned}
$$

THE STANDARD DEVIATION

- In statistics, the standard deviation of a random variable or distribution is the square root of its variance.
- If a random variable X has the expected value (mean) $E[X]=\mu$, then the standard deviation of X can be given by:

$$
\sigma_{x}=\sqrt{\sigma_{x}^{2}}=\sqrt{E\left[(X-\mu)^{2}\right]}
$$

- If we have a series of n measurements of a random variable X as X_{i}, where $i=1,2, \ldots, n$, then the sample standard deviation, can be used to estimate the population standard deviation of $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. The sample standard deviation is calculated as

$$
S_{x}=\sqrt{S_{x}^{2}}=\sqrt{\frac{\left.\sum_{i=1}^{n} \alpha_{i}-\bar{X}^{2}\right)}{n-1}}=\sqrt{1.24}=1.114
$$

SAMPLE COVARIANCE

- If we have a series of n measurements of a random variable X as X_{i}, where $i=1,2, \ldots, n$ and a series of n measurements of a random variable Y as Y_{i}, where $i=1,2, \ldots, n$, then the sample covariance is calculated as:

$$
S_{X, Y}=\operatorname{Cov}(X, Y)=\frac{1}{n-1} \sum_{i=1}^{n} \mathbf{X}-\bar{X} \mathbf{Y}-\bar{Y}_{-}^{-}
$$

Example

- Compare the following three sets

x_{i}	y_{i}	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$
2	13	-3	-7	21
6	20	1	0	0
7	27	2	7	14
$\bar{x}=5$	$\bar{y}=20$			$\operatorname{Cov}(x, y)=17.5$

x_{i}	y_{i}	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$
2	27	-3	7	-21
6	20	1	0	0
7	13	2	-7	-14
$\bar{x}=5$	$\bar{y}=20$			$\operatorname{Cov}(x, y)=-17.5$

CORRELATION COEFFICIENT

- If we have a series of n measurements of X and Y written as X_{i} and Y_{i}, where $i=1,2, \ldots, n$, then the sample correlation coefficient, can be used to estimate the population correlation coefficient between X and Y. The sample correlation coefficient is calculated as

$$
r_{x, y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1) S_{x} S_{y}}=\frac{n \sum_{i=1}^{n} X_{i} Y_{i}-\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} Y_{i}}{\sqrt{\left[n \sum_{i=1}^{n} X_{i}^{2}-\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right]\left[n \sum_{i=1}^{n} Y_{i}^{2}-\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right]}}
$$

Population coefficient of correlation

$$
\rho=\frac{\operatorname{COV}(X, Y)}{\sigma_{\mathrm{x}} \sigma_{y}}
$$

- The value of correlation coefficient falls between -1 and 1 :

$$
-1 \leq r_{x, y} \leq 1
$$

- $r_{x, y}=0 \Rightarrow X$ and Y are uncorrelated
- $r_{x, y}=1 \Rightarrow X$ and Y are perfectly positively correlated
- $r_{x, y}=-1=>X$ and Y are perfectly negatively correlated

Example

	X	Y	$\mathrm{X} * \mathrm{Y}$	X^{2}	Y^{2}
A	43	128	5504	1849	16384
B	48	120	5760	2304	14400
C	56	135	7560	3136	18225
D	61	143	8723	3721	20449
E	67	141	9447	4489	19881
F	70	152	10640	4900	23104
Sum	$\mathbf{3 4 5}$	$\mathbf{8 1 9}$	$\mathbf{4 7 6 3 4}$	$\mathbf{2 0 3 9 9}$	$\mathbf{1 1 2 4 4 3}$

- Substitute in the formula and solve for r :

$$
r=\frac{6 * 47634-345 * 819}{\sqrt{\left[6 * 20399-(345)^{2}\right]\left[6112443-(819)^{2}\right]}}=0.897
$$

- The correlation coefficient suggests a strong positive relationship between X and Y.

CORRELATION AND CAUSATION

- Recognize the difference between correlation and causation - just because two things occur together, that does not necessarily mean that one causes the other.
- For random processes, causation means that if A occurs, that causes a change in the probability that B occurs.
- Existence of a statistical relationship, no matter how strong it is, does not imply a cause-and-effect relationship between X and Y. for ex, let X be size of vocabulary, and Y be writing speed for a group of children. There most probably be a positive relationship but this does not imply that an increase in vocabulary causes an increase in the speed of writing. Other variables such as age, education etc will affect both X and Y.
- Even if there is a causal relationship between X and Y, it might be in the opposite direction, i.e. from Y to X. For eg, let X be thermometer reading and let Y be actual temperature. Here Y will affect X.

[^0]: (-) Negatively Skewed Distribution

