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WHY PROBABILITY IS NEEDED? 

• Nothing in life is certain. We can quantify the 
uncertainty using PROBABILITY 

• A probability provides a quantitative 
description of the chances or likelihoods 
associated with various outcomes. 

• It provides a bridge between descriptive and 
inferential statistics. 
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WHAT IS PROBABILITY? 
• CLASSICAL INTERPRETATION(Frequency of Occurrence) 
    If a random experiment is repeated, the relative 

frequency for any given outcome is the probability of this 
outcome.  

    Probability of an event: Relative frequency of the 
occurrence of the event in the long run. 
– Example: Probability of observing a head in a fair coin toss is 0.5 (if coin is tossed 

long enough). 
 

• SUBJECTIVE INTERPRETATION(Indication of Uncertanity) 
   The assignment of probabilities to event of interest is 

subjective.  
– Example: I am guessing there is 50% chance of raining today.  



BASIC CONCEPTS 
• Experiment: is the process by which an 

observation (or measurement) is obtained. 
• Random experiment: involves obtaining 

observations of some kind 
• Population:  Set of all possible observations.  
• Elementary event (simple event): one possible 

outcome of an experiment 
• Event (Compound event): one or more possible 

outcomes of a random experiment 
• Sample space: the set of all outcomes for an 

experiment. 



EXAMPLES OF A RANDOM 
EXPERIMENT 

 Experiment  Outcomes 

Flip a coin  Heads and Tails 

Record a statistics test marks Numbers between 0 
         and 100 

Measure the time to assemble Numbers from zero    
a computer  and above 
 

 



7 

SAMPLE SPACE 

Countable Uncountable 
(Continuous ) 

Finite number 
of elements 

Infinite number of 
elements 
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EXAMPLES 
• Countable sample space examples: 

– Tossing a coin experiment 
S : {Head, Tail} 

– Rolling a dice experiment 
S : {1, 2, 3, 4, 5, 6} 

– Determination of the sex of a newborn child 
S : {girl, boy} 

• Uncountable sample space examples: 
– Life time of a light bulb  

S : [0, ∞) 
– Closing daily prices of a stock  

S : [0, ∞) 
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– Given a sample space S ={E1,E2,…,Ek}, the following 
characteristics for the probability P(Ei) of the simple 
event Ei  must hold: 
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• The probability of an event A is equal to the 
sum of the probabilities of the simple events 
contained in A  

• If the simple events in an experiment are 
equally likely, you can calculate 

 

 



EXAMPLE:  

 An urn contains 11 red balls and 3 white balls. 
Two balls are drawn. How likely is that both 
balls are red? 

  Suppose we model each ball by positive 
integer 1-11 for red balls, 12-14 for white 
balls. 

 S (the sample space): {(1,2),(1,3),....,(13,14)} 

• The set S models all possible draws.  

• 14*14-14=14*13=182 possibilities  

 

 



E : event of two red balls. 

 E={(1,2),(1,3),....,(10,11)} 

• Number of elements of E = 11*11-11=110 

P: the probability of a finite set is the sum of all 
it’s elements 
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COUNTING RULES 

• While forming the sample space tt some point, 
we have to stop listing and to use some 
counting rules. 

 

• Methods to determine how many subsets can 
be obtained from a set of objects. 



THE m*n RULE 

• If an experiment is performed in two stages, 
with m ways to accomplish the first stage and 
n ways to accomplish the second stage, then 
there are mn ways to accomplish the 
experiment. 

• This rule is easily extended to k stages, with 
the number of ways equal to  

n1 n2 n3 … nk 

 



• Example: Toss two coins. The total number of 
simple events is: 2*2=4 

 

• Example: Toss three dice. The total number of 
simple events is: 6*6*6=216 

 

• Example: Two balls are drawn from a dish 
containing two red and two blue balls. The 
total number of simple events is: 4*3=12 
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THE FACTORIAL 

• number of ways in which objects can be 
permuted.  

n! = n(n-1)(n-2)…2.1 

0! = 1, 1! = 1 

 

 Example: Possible permutations of {1,2,3} are 
{1,2,3}, {1,3,2}, {3,1,2}, {2,1,3}, {2,3,1}, {3,2,1}. 
So, there are 3!=6 different permutations.  
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PARTITION RULE 

• There exists a single set of N distinctly 
different elements which is partitioned into k 
sets; the first set containing n1 elements, …, 
the k-th set containing nk elements. The 
number of different partitions is 

1 2

1 2

!
 where .

! ! !
k

k

N
N n n n

n n n



• Example: Let’s partition {1,2,3} into two sets; 
first with 1 element, second with 2 elements. 

 

Partition 1: {1} {2,3} 

Partition 2: {2} {1,3} 

Partition 3: {3} {1,2} 

3!/(1! 2!)=3 different partitions 
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 Example: How many different arrangements 
can be made of the letters “statistics”? 

 

• N=10, n1=3 s, n2=3 t, n3=1 a, n4=2 i, n5=1 c 
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PERMUTATIONS 

• Any ordered sequence of r objects taken from 
a set of n distinct objects is called a 
permutation of size r of the objects. 
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• Example: How many 3-digit lock combinations 
can we make from the numbers 1, 2, 3, and 4? 
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COMBINATION 

• Given a set of n distinct objects, any 
unordered subset of size r of the objects is 
called a combination. 
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• Example: Three members of a 5-person 
committee must be chosen to form a 
subcommittee. How many different 
subcommittees could be formed? 
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COUNTING 

Number of possible 

arrangements of size r from n 

objects 

Without 

Replacement 

With 

Replacement 

Ordered 

Unordered 
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ELEMENTARY SET OPERATIONS 

INTERSECTION 

• The intersection of event A and B is the event 

that occurs when both A and B occur. It is 

denoted by A B. 

• The joint probability of A and B is the 

probability of the intersection of A and B, 

which is denoted by P(A B). 

 



UNION 

• The union event of A and B is the event that 
occurs when either A or B or both occur. It is 
denoted by A B.  

 

COMPLEMENT 

• The complement of event A  (denoted by AC) is 
the event that occurs when event A does not 
occur. 
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PROBABILITY FUNCTION AXIOMS 

 Let S denote a non-empty or finite or 
countably infinite set and let 2Sdenote the set 
of all subsets of S. A real-valued function P 
defined on 2Sis a probability function if 

• For any event E, 0  P(E)  1. 

• P(S) = 1. 

•  If  E1, E2,… are pairwise disjoint events, then 
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THE CALCULUS OF PROBABILITIES 

• If P is a probability function and A and B any 
sets, then 

a. P(B  AC) = P(B) P(A  B) 

b. If A  B, then P(A)  P(B) 

c. P(A  B)  P(A)+P(B)  1 (Bonferroni Inequality) 

 

d.  
 

1 2
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 for any sets A , ,
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(Boole’s Inequality) 
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MUTUALLY EXCLUSIVE EVENTS 

• When two events A and B are mutually 
exclusive or disjoint, , if A and B have no 
common outcomes.  

A B=  and P(A B) = 0 

 •The events A1,A2,… are pairwise mutually 
exclusive (disjoint), if 
                 Ai  Aj =  for all i  j. 
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EQUALLY LIKELY OUTCOMES 

• The same probability is assigned to each simple 

event in the sample space, S. 

• Suppose that S={s1,…,sN} is a finite sample space. If 

all the outcomes are equally likely, then P({si})=1/N 

for every outcome si.  
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For any two events A and B 

P(A  B) = P(A) + P(B) - P(A  B) 

ADDITION RULE 
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COMPLEMENT 

• We know that for any event A: 

– P(A AC) = 0 

• Since either A or AC must occur,  

 P(A AC) =1 

• so that P(A AC) = P(A)+ P(AC) = 1 

Then 

( ) 1 CP A P A



CONDITIONAL PROBABILITY 

1 2 1 2 1 2

( )
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The probability that A occurs, given that event B 

has occurred is called the conditional 

probability of A given B and is defined as  



Example: A red die and a blue die are thrown. 

    A = { the red die scores a 6 } 

    B = { at least one 6 is obtained on the two dice } 
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   Example: A bowl contains five candies two red and 
three blue. Randomly select two candies, and define 
– A: second candy is red. 

– B: first candy is blue. 

P(A|B) =P(2nd red|1st blue)= 2/4 = 1/2 

P(A|not B) = P(2nd red|1st red) = 1/4 



INDEPENDENT VS. NON-INDEPENDENT EVENTS 

• If A and B are independent, then 
 

P(A and B) = P(A) x P(B) 
 

   which means that conditional probability is:  

   P(B | A) = P(A and B) / P(A) = P(A)P(B)/P(A)  = P(B) 
 

• We have a more general multiplication rule for events 
that are not independent: 

 

P(A and B) = P(B | A) × P(A) 

 

 



• In particular, we would like to know whether 
they are independent, that is, if the probability 
of one event is not affected by the occurrence 
of the other event. 

 Two events A and B are said to be independent 
 if 

•  P(A|B) = P(A) 

  and 

•  P(B|A) = P(B) 

 



Example 
Roll two dice 

S=all possible pairs ={(1,1),(1,2),…,(6,6)} 

• Let A=first roll is 1; B=sum is 7; C=sum is 8 P(A|B)=?; 
P(A|C)=? 

Solution: 

• P(A|B)=P(A and B)/P(B) 

P(B)=P({1,6} or {2,5} or {3,4} or {4,3} or {5,2} or {6,1}) 

    = 6/36=1/6 

P(A|B)= P({1,6})/(1/6)=1/6 =P(A)         A and B are  
      independent 



• P(A|C)=P(A and C)/P(C)=P(Ø)/P(C)=0  

   A and C are disjoint 

 

P(C)=P({2,6} or {3,5} or {4,4} or {5,3} or {6,2}) 

       = 5/36 

 



THE MULTIPLICATIVE RULE FOR 
INTERSECTIONS 

• For any two events, A and B, the probability that 
both A and B occur is 

 P(A B) = P(A) P(B given that A occurred)    
  = P(A)P(B|A) 

• If the events A and B are independent, then the 
probability that both A and B occur is 

P(A B) = P(A) P(B)  



BAYES’ THEOREM 

• Suppose you have P(B|A), but need P(A|B). 

 

 

 

• Can be generalized to more than two events.  
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THE LAW OF TOTAL PROBABILITY 

P(A) = P(A  B1) + P(A  B2) + … + P(A  Bk)  

= P(B1)P(A|B1) + P(B2)P(A|B2) + … + P(Bk)P(A|Bk) 

 

   Let B1 , B2 , B3 ,..., Bk be mutually exclusive and 
exhaustive events (that is, one and only one 
must happen).  Then the probability of any event 
A can be written as 

 



• Suppose that the events B1, B2, B3, . . . , Bn 
partition the sample space for some 
experiment and that A is an event defined 
on S. For any integer, k, such that 

 we have 
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 Example: You are living in a dorm. One night the 
fire alarm goes off. How likely is it that there is a 
fire?  

 Here H is the event “there is a fire” and  
 E is the event “the fire alarm goes off.”  
 You want to know P(H|E).  
 You estimate that all things being equal a fire is 

unlikely on a given night, setting P(H)=0.001 
(roughly one fire in three years).  

 You know that in a typical semester of about 100 
days there are about 3 fire alarms (typically false 
alarms), so you estimate P(E)=0.03.  



• Finally you guess that it is nearly certain 
someone would set off the alarm if there 
really were a fire, so you estimate 
P(E|H)=0.98.  

 

• By Bayes’ Rule, 

 P(H|E)=P(H)P(E|H)/P(E)=(0.001)(0.98)/(0.03)=
0.033. 



• Example:A drug company has designed a test for a 
disease. Through extensive testing, the company 
reports that the test produces only 1% false 
positive results (i.e., a healthy person tests 
positive) and only 2% false negative results (i.e., a 
person with the disease tests negative).  

• Let P be the event “someone tests positive,”  
• N be the event “someone tests negative,”  
• H be the event “someone is healthy,” and  
• D be the event “someone has the disease.”  
• Then the company is reporting P(P|H)=0.01 (or 

equivalently P(N|H)=0.99) and P(N|D)=0.02 (or 
equivalently P(P|D)=0.98).  
 
 



 Suppose you test positive for the disease. How likely 
is it that you in fact have the disease?  

 It is tempting but incorrect to say 98% since 
P(P|D)=0.98.  

 But you want to know P(D|P), which may be quite 
different. It turns out you do not have enough 
information yet. Oddly enough you must also know 
P(D), the prevalence of the disease in your 
population.  

 

 



Suppose the disease is rare, occurring in only 0.05% 

of the population. Then applying the second form of 

Bayes’ we get  
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