IAM 530
 ELEMENTS OF PROBABILITY AND STATISTICS

LECTURE 2-INTRODUCTION TO PROBABILITY

WHY PROBABILITY IS NEEDED?

- Nothing in life is certain. We can quantify the uncertainty using PROBABILITY
- A probability provides a quantitative description of the chances or likelihoods associated with various outcomes.
- It provides a bridge between descriptive and inferential statistics.

WHAT IS PROBABILITY?

- CLASSICAL INTERPRETATION(Frequency of Occurrence) If a random experiment is repeated, the relative frequency for any given outcome is the probability of this outcome.
Probability of an event: Relative frequency of the occurrence of the event in the long run.
- Example: Probability of observing a head in a fair coin toss is 0.5 (if coin is tossed long enough).
- SUBJECTIVE INTERPRETATION(Indication of Uncertanity) The assignment of probabilities to event of interest is subjective.
- Example: I am guessing there is 50\% chance of raining today.

BASIC CONCEPTS

- Experiment: is the process by which an observation (or measurement) is obtained.
- Random experiment: involves obtaining observations of some kind
- Population: Set of all possible observations.
- Elementary event (simple event): one possible outcome of an experiment
- Event (Compound event): one or more possible outcomes of a random experiment
- Sample space: the set of all outcomes for an experiment.

EXAMPLES OF A RANDOM EXPERIMENT

Experiment

Flip a coin
Record a statistics test marks

Measure the time to assemble Numbers from zero a computer

Numbers between 0

Outcomes

 Heads and Tails$$
\text { and } 100
$$ and above

EXAMPLES

- Countable sample space examples:
- Tossing a coin experiment S : \{Head, Tail\}
- Rolling a dice experiment

$$
S:\{1,2,3,4,5,6\}
$$

- Determination of the sex of a newborn child

$$
S:\{\text { girl, boy }\}
$$

- Uncountable sample space examples:
- Life time of a light bulb

$$
S:[0, \infty)
$$

- Closing daily prices of a stock

$$
S:[0, \infty)
$$

ASSIGNING PROBABILITIES

- Given a sample space $S=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}$, the following characteristics for the probability $\mathrm{P}\left(E_{i}\right)$ of the simple event E_{i} must hold:

$$
\begin{aligned}
& \text { 1. } 0 \leq P\left(E_{i}\right) \leq 1 \text { for each } i \\
& \text { 2. } \sum_{i=1}^{k} P\left(E_{i}\right)=1
\end{aligned}
$$

- The probability of an event A is equal to the sum of the probabilities of the simple events contained in A
- If the simple events in an experiment are equally likely, you can calculate

$$
P(A)=\frac{\text { total outcomes in } \mathrm{A}}{\text { total outcomes in } \mathrm{S}}
$$

EXAMPLE:

An urn contains 11 red balls and 3 white balls. Two balls are drawn. How likely is that both balls are red?

Suppose we model each ball by positive integer 1-11 for red balls, 12-14 for white balls.

S (the sample space): $\{(1,2),(1,3), \ldots .,(13,14)\}$

- The set S models all possible draws.
- 14*14-14=14*13=182 possibilities

E : event of two red balls.

$$
E=\{(1,2),(1,3), \ldots .,(10,11)\}
$$

- Number of elements of $\mathrm{E}=11 * 11-11=110$

P : the probability of a finite set is the sum of all it's elements

$$
P(\mathrm{E})=\sum_{s \in E} P(s)=\sum_{s \in E} \frac{1}{182}=\frac{110}{182}
$$

COUNTING RULES

- While forming the sample space tt some point, we have to stop listing and to use some counting rules.
- Methods to determine how many subsets can be obtained from a set of objects.

THE m*n RULE

- If an experiment is performed in two stages, with \mathbf{m} ways to accomplish the first stage and n ways to accomplish the second stage, then there are $\mathbf{m n}$ ways to accomplish the experiment.
- This rule is easily extended to \mathbf{k} stages, with the number of ways equal to

$$
n_{1} n_{2} n_{3} \ldots n_{k}
$$

- Example: Toss two coins. The total number of simple events is: $2 * 2=4$
- Example: Toss three dice. The total number of simple events is: $6^{*} 6 * 6=216$
- Example: Two balls are drawn from a dish containing two red and two blue balls. The total number of simple events is: $4 * 3=12$

THE FACTORIAL

- number of ways in which objects can be permuted.

$$
\begin{gathered}
n!=n(n-1)(n-2) \ldots 2.1 \\
0!=1,1!=1
\end{gathered}
$$

Example: Possible permutations of $\{1,2,3\}$ are $\{1,2,3\},\{1,3,2\},\{3,1,2\},\{2,1,3\},\{2,3,1\},\{3,2,1\}$. So, there are $3!=6$ different permutations.

PARTITION RULE

- There exists a single set of N distinctly different elements which is partitioned into k sets; the first set containing n_{1} elements, ..., the k-th set containing n_{k} elements. The number of different partitions is

$$
\frac{N!}{n_{1}!n_{2}!\cdots n_{k}!} \text { where } N=n_{1}+n_{2}+\cdots+n_{k}
$$

- Example: Let's partition $\{1,2,3\}$ into two sets; first with 1 element, second with 2 elements.

Partition 1: $\{1\}\{2,3\}$
Partition 2: $\{2\}\{1,3\}$
Partition 3: $\{3\}\{1,2\}$
$3!/(1!2!)=3$ different partitions

Example: How many different arrangements

 can be made of the letters "statistics"?- $N=10, n 1=3 \mathrm{~s}, \mathrm{n} 2=3 \mathrm{t}, \mathrm{n} 3=1 \mathrm{a}, \mathrm{n} 4=2 \mathrm{i}, \mathrm{n} 5=1 \mathrm{c}$

$$
\frac{10!}{3!3!1!2!1!}=50400
$$

PERMUTATIONS

- Any ordered sequence of r objects taken from a set of n distinct objects is called a permutation of size r of the objects.
$P_{r}^{n}=\frac{n!}{(n-r)!}$
where $n!=n(n-1)(n-2) . .(2)(1)$ and $0!\equiv 1$.
- Example: How many 3-digit lock combinations can we make from the numbers $1,2,3$, and 4 ?

$$
P_{3}^{4}=\frac{4!}{1!}=4(3)(2)=24
$$

COMBINATION

- Given a set of n distinct objects, any unordered subset of size r of the objects is called a combination.

$$
C_{r}^{n}=\frac{n!}{r!(n-r)!}
$$

- Example: Three members of a 5-person committee must be chosen to form a subcommittee. How many different subcommittees could be formed?

$$
C_{3}^{5}=\frac{5!}{3!(5-3)!}=\frac{5(4)(3)(2) 1}{3(2)(1)(2) 1}=\frac{5(4)}{(2) 1}=10
$$

COUNTING

	Number of possible arrangements of size r from n objects	
	Without Replacement	With Replacement
	$\frac{\boldsymbol{n}!}{\boldsymbol{n}-\boldsymbol{r}!}$	$\boldsymbol{n}^{\boldsymbol{r}}$
Unordered	$\binom{\boldsymbol{n}}{\boldsymbol{r}}$	$\binom{\boldsymbol{n}+\boldsymbol{r}-1}{\boldsymbol{r}}$

ELEMENTARY SET OPERATIONS

INTERSECTION

- The intersection of event A and B is the event that occurs when both A and B occur. It is denoted by $\mathrm{A} \cap \mathrm{B}$.
- The joint probability of A and B is the probability of the intersection of A and B, which is denoted by $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.

UNION

- The union event of A and B is the event that occurs when either A or B or both occur. It is denoted by $A \cup B$.

$$
P(A \bigcup B)=P(A)+P(B)-P(A \cap B)
$$

COMPLEMENT

- The complement of event A (denoted by A^{C}) is the event that occurs when event A does not occur.

$$
P\left(A^{c}\right)=1-P(A)
$$

PROBABILITY FUNCTION AXIOMS

Let S denote a non-empty or finite or countably infinite set and let $2^{\text {S }}$ denote the set of all subsets of S. A real-valued function P defined on 2^{S} is a probability function if

- For any event $E, 0 \leq \mathrm{P}(E) \leq 1$.
- $P(S)=1$.
- If E_{1}, E_{2}, \ldots are pairwise disjoint events, then

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

THE CALCULUS OF PROBABILITIES

- If P is a probability function and A and B any sets, then
a. $P\left(B \cap A^{C}\right)=P(B)-P(A \cap B)$
b. If $A \subset B$, then $P(A) \leq P(B)$
c. $P(A \cap B) \geq P(A)+P(B)-1$ (Bonferroni Inequality)
d. $\boldsymbol{P}\left(\bigcup_{i=1}^{\infty} \boldsymbol{A}_{\boldsymbol{i}}\right) \leq \sum_{i=1}^{\infty} \boldsymbol{P} \quad \boldsymbol{A}_{i}$ for any sets $\mathrm{A}_{1}, \boldsymbol{A}_{2}, \cdots$
(Boole’s Inequality)

MUTUALLY EXCLUSIVE EVENTS

- When two events A and B are mutually exclusive or disjoint, , if A and B have no common outcomes.

$$
\mathrm{A} \cap \mathrm{~B}=\varnothing \text { and } \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0
$$

-The events A_{1}, A_{2}, \ldots are pairwise mutually exclusive (disjoint), if

$$
\mathrm{A}_{i} \cap \mathrm{~A}_{j}=\varnothing \text { for all } i \neq j .
$$

EQUALLY LIKELY OUTCOMES

- The same probability is assigned to each simple event in the sample space, S.
- Suppose that $S=\left\{s_{1}, \ldots, S_{N}\right\}$ is a finite sample space. If all the outcomes are equally likely, then $P\left(\left\{s_{i}\right\}\right)=1 / \mathrm{N}$ for every outcome s_{i}.

ADDITION RULE

For any two events A and B

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

COMPLEMENT

- We know that for any event \mathbf{A} :

$$
-P\left(A \cap A^{C}\right)=0
$$

- Since either \mathbf{A} or \mathbf{A}^{C} must occur,

$$
P\left(A \cup A^{C}\right)=1
$$

- so that $P\left(A \cup A^{C}\right)=P(A)+P\left(A^{C}\right)=1$

Then

$$
P A=1-P\left(A^{C}\right)
$$

CONDITIONAL PROBABILITY

The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(A \cap B)}{P(B)} \quad \text { if } \quad P(B) \neq 0 \\
& \quad 0 \leq P(A \mid B) \leq 1 \\
& P(A \mid B)=1-P\left(A^{C} \mid B\right), \quad P(A \mid A)=1 \\
& P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)-P\left(A_{1} \cap A_{2} \mid B\right)
\end{aligned}
$$

Example: A red die and a blue die are thrown.
$\boldsymbol{A}=\{$ the red die scores a 6$\}$
$\boldsymbol{B}=\{$ at least one 6 is obtained on the two dice $\}$

$$
\begin{aligned}
& P(A)=\frac{6}{36}=\frac{1}{6} \text { and } P(B)=\frac{11}{36} \\
& \begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(A)}{P(B)} \\
& =\frac{1 / 6}{11 / 36}=\frac{6}{11}
\end{aligned}
\end{aligned}
$$

Example: A bowl contains five candies two red and three blue. Randomly select two candies, and define

- A: second candy is red.
- B: first candy is blue.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}\left(2^{\text {nd }} \text { red } \mid 1^{\text {st }} \text { blue }\right)=2 / 4=1 / 2 \\
& \mathrm{P}(\mathrm{~A} \mid \text { not } \mathrm{B})=\mathrm{P}\left(2^{\text {nd }} \text { red } \mid 1^{\text {st }} \text { red }\right)=1 / 4
\end{aligned}
$$

INDEPENDENT VS. NON-INDEPENDENT EVENTS

- If A and B are independent, then

$$
P(A \text { and } B)=P(A) \times P(B)
$$

which means that conditional probability is:
$P(B \mid A)=P(A$ and $B) / P(A)=P(A) P(B) / P(A)=P(B)$

- We have a more general multiplication rule for events that are not independent:

$$
P(A \text { and } B)=P(B \mid A) \times P(A)
$$

- In particular, we would like to know whether they are independent, that is, if the probability of one event is not affected by the occurrence of the other event.
Two events A and B are said to be independent if
$P(A \mid B)=P(A)$
and

$$
P(B \mid A)=P(B)
$$

Example

Roll two dice
$S=$ all possible pairs $=\{(1,1),(1,2), \ldots,(6,6)\}$

- Let $A=$ first roll is $1 ; B=$ sum is 7 ; $C=$ sum is $8 P(A \mid B)=$?; $P(A \mid C)=$?

Solution:

- $P(A \mid B)=P(A$ and $B) / P(B)$
$P(B)=P(\{1,6\}$ or $\{2,5\}$ or $\{3,4\}$ or $\{4,3\}$ or $\{5,2\}$ or $\{6,1\})$
$=6 / 36=1 / 6$
$P(A \mid B)=P(\{1,6\}) /(1 / 6)=1 / 6=P(A)$
A and B are independent
- $P(A \mid C)=P(A$ and $C) / P(C)=P(\varnothing) / P(C)=0$
A and C are disjoint

$$
\begin{aligned}
\mathrm{P}(\mathrm{C}) & =\mathrm{P}(\{2,6\} \text { or }\{3,5\} \text { or }\{4,4\} \text { or }\{5,3\} \text { or }\{6,2\}) \\
& =5 / 36
\end{aligned}
$$

THE MULTIPLICATIVE RULE FOR INTERSECTIONS

- For any two events, A and B, the probability that both A and B occur is

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) & =\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \text { given that } \mathrm{A} \text { occurred }) \\
& =\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A})
\end{aligned}
$$

- If the events A and B are independent, then the probability that both A and B occur is

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})
$$

BAYES' THEOREM

- Suppose you have $P(B \mid A)$, but need $P(A \mid B)$.

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})}=\frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~B})} \text { for } \mathrm{P}(\mathrm{~B}) \neq 0
$$

- Can be generalized to more than two events.

THE LAW OF TOTAL PROBABILITY

Let $B_{1}, B_{2}, B_{3}, \ldots, B_{k}$ be mutually exclusive and exhaustive events (that is, one and only one must happen). Then the probability of any event A can be written as

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{k}\right) \\
& =\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{~B}_{2}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{~B}_{k}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{k}\right)
\end{aligned}
$$

- Suppose that the events $B_{1}, B_{2}, B_{3,}, \ldots, B_{\mathrm{n}}$ partition the sample space for some experiment and that A is an event defined on S. For any integer, k, such that $1 \leq k \leq n$ we have

$$
P \boldsymbol{B}_{k} \left\lvert\, A_{=}=\frac{P \mathbb{A} \mid B_{k} P \boldsymbol{B}_{k}}{\sum_{j=1}^{n} P\left(A_{j} P \bigotimes_{j}\right.}\right.
$$

Example: You are living in a dorm. One night the fire alarm goes off. How likely is it that there is a fire?
Here H is the event "there is a fire" and
E is the event "the fire alarm goes off."
You want to know $\mathrm{P}(\mathrm{H} \mid \mathrm{E})$.
You estimate that all things being equal a fire is unlikely on a given night, setting $P(H)=0.001$ (roughly one fire in three years).
You know that in a typical semester of about 100 days there are about 3 fire alarms (typically false alarms), so you estimate $P(E)=0.03$.

- Finally you guess that it is nearly certain someone would set off the alarm if there really were a fire, so you estimate $P(E \mid H)=0.98$.
- By Bayes' Rule,
$P(H \mid E)=P(H) P(E \mid H) / P(E)=(0.001)(0.98) /(0.03)=$ 0.033.
- Example:A drug company has designed a test for a disease. Through extensive testing, the company reports that the test produces only 1% false positive results (i.e., a healthy person tests positive) and only 2% false negative results (i.e., a person with the disease tests negative).
- Let P be the event "someone tests positive,"
- N be the event "someone tests negative,"
- H be the event "someone is healthy," and
- D be the event "someone has the disease."
- Then the company is reporting $P(P \mid H)=0.01$ (or equivalently $P(N \mid H)=0.99$) and $P(N \mid D)=0.02$ (or equivalently $P(P \mid D)=0.98)$.

Suppose you test positive for the disease. How likely is it that you in fact have the disease?
It is tempting but incorrect to say 98% since $P(P \mid D)=0.98$.
But you want to know $P(D \mid P)$, which may be quite different. It turns out you do not have enough information yet. Oddly enough you must also know $P(D)$, the prevalence of the disease in your population.

Suppose the disease is rare, occurring in only 0.05% of the population. Then applying the second form of Bayes' we get

$$
\begin{aligned}
& P(D \mid P)=\frac{P(D) P(P \mid D)}{P(D) P(P \mid D)+P(H) P(P \mid H)} \\
& =\frac{0.0005^{*} 0.98}{0.0005^{*} 0.98+0.9995^{*} 0.01} \approx 0.047=4.7 \%
\end{aligned}
$$

