ATILIM UNIVERSITY DEPARTMENT OF MANUFACTURING ENGINEERING 2015 – 2016 FALL SEMESTER <u>MFGE 315 HEAT AND MASS TRANFER</u> <u>COURSE OUTLINE</u>

Instructor	: Asst. Prof. Dr. Levent ÇOLAK (<u>lcolak@baskent.edu.tr</u>)		
Office/Tel/Web	: D - 321 / 246 66 66 - 1355 / <u>http://www.baskent.edu.tr/~lcolak</u>		
Course Hours	: Monday 15:30 - 17:20 (1033) & Wednesday 15:30 - 17:20 (1033)		
Text Book	: Fundamentals of Heat and Mass Transfer 7 th ed.		
	F.P. Incropera, P. De Witt, T.L. Bergman, A.S. Lavine, WILEY, 2012		
Supplements	: 1- Heat Transfer 10 th ed., J.P. HOLMAN, Mc Graw HILL		
	2- Heat and Mass Transfer 4 th ed., Yunus A. CENGEL, Mc GRAW HILL, 201		

2- rieat and Mass Transfer 4th ed., Yunus A. ÇENGEL, Mc GRAW HILL, 2011 3- Heat Transfer 2th ed., D.PITTS, L.SISSOM, Schaum's Outlines, McGraw HILL

Week	Date	Subjects and Related Sections		
#1	14 Sep. – 18 Sep.	Introduction, basic concepts and definitions, conduction, convection, radiation, thermal resistance, conservation of energy, units and dimensions. (Chpt. 1)		
#2	21 Sep. – 25 Sep.	Introduction to conduction, Conduction rate equation, thermal properties of matter, thermal conductivity, heat diffusion equation, boundary and initial conditions (Chpt. 2)		
#3	28 Sep. – 02 Oct.	One dimensional steady state conduction, plane wall and radial systems, temperature distribution, thermal resistance, composite wall, contact resistance, overall heat transfer coefficient (Chpt. 3.1 – 3.4)		
#4	05 Oct. – 09 Oct.	One dimensional steady state conduction, conduction with thermal energy generation, plane wall & radial systems (Chpt.3.5)		
#5	12 Oct. – 16 Oct.	One dimensional steady state conduction, heat transfer from extended surfaces, fin performance, fin efficiency, overall surface efficiency (Chpt. 3.6)		
#6	19 Oct. – 23 Oct.	Two dimensional steady state conduction, seperation of variables method, shape factor, finite difference equations, energy balance method (Chpt. $4.1 - 4.6$)		
#7	26 Oct 30 Oct.	Rewiew and problem solving, on one and two dimensional steady state conduction, (Chapters 1, 2 & 3)		
#8	02 Nov. – 06 Nov.	Transient conduction, lumped capacitance method, spatial effects, exact and approximate solutions for plane wall and radial systems (Chpt. $5.1 - 5.8$)		
#9	09 Nov. – 13 Nov.	Introduction to convection, boundary layers, local and average convection coefficients, laminar and turbulent flow, dimensionless parameters, Reynolds analogy (Chpt. $6.1 - 6.3 \& 6.6 - 6.7$)		
#10	16 Nov. – 20 Nov.	External Flow, Convection coefficient calculations for paralel flow over flat plates, cross flow over cylinders and spheres, flow across banks of tubes (Chpt. 7.1 – 7.6)		
#11	23 Nov. – 27 Nov.	Internal Flow, Convection coefficient calculations for internal flow pipes and channels, mean velocity, friction factor and velocity profile in fully developed flow, thermal considerations and energy balance (Chpt. 8.1 – 8.6)		
#12	30 Nov. – 04 Dec.	Free Convection, Convection coefficient calculations for free convection over vertical, inclined and horizontal planes, cylinders and spheres, combined free and forced convection (Chpt. 9.1 – 9.6 & 9.9)		
#13	07 Dec. – 11 Dec.	Rewiew and problem solving, on forced convection for external and internal flows and for free convection, (Chapters 6, 7, 8 & 9)		
#14	14 Dec. – 18 Dec.	Radiation , Fundamental concepts, radiation intensity, blackbody radiation, emission, absorption, reflection and transmission, Kirchoff's law, gray surface (Chpt. 12.1 – 12.8)		
#15	21 Dec. – 23 Dec.	Radiation exchange between surfaces, View factor, blackbody radiation exchange, radiation exchange between opaque, diffuse, gray surfaces in an enclosure (Chpt. 13.1 – 13.3)		

GRADING

Lab Project &	Quizes	Mid-Term	Final	Total
Homeworks		Exams	Exam	Grade
10 %	15 %	40 %	35 %	100 %

<u>Note:</u> Midterm exam dates (MT # 1 and MT # 2) will be announced later. % 70 attendance is compulsory, students who could not attend at least % 70 of the courses can not enter to final and make-up exams and will take F2 grade.