ATILIM UNIVERSITY DEPARTMENT OF MANUFACTURING ENGINEERING 2015 – 2016 SPRING SEMESTER

MFGE 214 INTRODUCTION TO THERMOFLUIDS (3 Credits) COURSE OUTLINE

Instructor : Asst. Prof. Dr. Levent ÇOLAK (<u>lcolak@baskent.edu.tr</u>)
Office/Tel/Web : D - 321 / 246 66 66 - 1355 / <u>http://www.baskent.edu.tr/~lcolak</u>

Course Hours : Monday 14:30 - 17:20 (B - 1015)

Text Book : Introduction to Thermal and Fluid Engineering (International Edition)

D. A. KAMINSKI & M. K. JENSEN - WILEY, 2005.

Supplements : 1- Fundamentals of Thermal Fluid Sciences 3rd ed.

ÇENGEL & BOLES - MCGRAW HILL, 2008.

2- Principles of Engineering Thermodynamics 7th ed. SI Units MORAN, SHAPIRO, BOETTNER & BAILEY - WILEY, 2012.

3- Introduction to Fluid Mechanics, 7th ed.,

FOX, MCDONALD & PRITCHARD - WILEY, 2011.

Week	Date	Subjects and Related Sections		
#1	15 Feb. – 19 Feb.	Introduction to Thermal and Fluids Engineering; Basic Concepts, Thermodynamics, Heat Transfer, Fluid Mechanics, Definitions of Property, System, Boundary, State, Process, Cycle (1.1 - 1.5)		
#2	22 Feb. – 26 Feb.	The First Law of Thermodynamics; Definitions of Energy, Power, Work and Heat, The Pizza Procedure for Problem Solving (2.1 – 2.14)		
#3	29 Feb. – 04 Mar.	Thermodynamic Properties; Properties of Pure Substances, Equation of State for Gases, Real Gases, Compressibility Factor, Ideal Gases, Specific Heat of Ideal Gases (5.1 – 5.7 & 2.6 & 2.11)		
#4	07 Mar. – 11 Mar.	Thermodynamic Properties; Energy Analysis of Closed Systems by Using Tables for Evaluating Properties (Problems of Chapters 2 & 5)		
#5	14 Mar. – 18 Mar.	Conservation of Mass and Energy for an Opens System; Definition of Mass Flowrate (4.4 – 4.5)		
#6	21 Mar. – 25 Mar.	Applications of the Energy Equation to Open Systems; Problems for SSSF (Steady) and USUF (Transient) Processes (6.1 – 6.8)		
#7	28 Mar. – 01 Apr.	Thermodynamic Cycles and The Second Law; Definition of Thermodynamic Cycles, Efficiency and COP Concepts for Cycles, Carnot Cycle, (7.1 – 7.5)		
#8	04 Apr. – 08 Apr.	Thermodynamic Cycles and The Second Law; Basic Concepts, Definition of Entropy, Reversible and Irreversible Process (7.6 - 7.9)		
#9	11 Apr 15 Apr.	Thermodynamic Cycles and The Second Law; Entropy Balances for Open and Closed Systems (7.10 - 7.11)		
#10	18 Apr. – 22 Apr.	Thermodynamic Cycles and The Second Law; Second law Analysis of Turbines and Pumps, Definition of Isentropic Efficiency (7.12)		
#11	25 Apr 29 Apr.	Fundamentals of Fluid Mechanics; Fluid Statics, Pressure, Force, Buoyancy (4.2)		
#12	02 May - 06 May	Fundamentals of Fluid Mechanics; The Bernoulli Equation and Applications (4.6)		
#13	09 May – 13 May	Fundamentals of Fluid Mechanics; Conservation of Linear Momentum for an Open System (4.8)		
#14	16 May – 20 May	Internal Flows; Basic Concepts, Laminar and Turbulent Flow (9.4)		
#15	23 May – 27 May	Internal Flows; Head Loss, Pressure Drop in Pipes (9.5 & 9.6)		

GRADING

Homeworks	Quizes	Mid-Term	Final	Total
10 %	15 %	Exams 40 %	Exam 35 %	Grade 100 %

Note: Midterm exam dates (MT # 1 and MT # 2) will be announced later.