Chapter \#2: Solar Geometry

Date and day

- Date is represented by month and ' i '
- Day is represented by ' n '

Month	$\mathbf{n}^{\text {th }}$ day for $\mathrm{i}^{\text {th }}$ date
January	i
February	$31+\mathrm{i}$
March	$59+\mathrm{i}$
\ldots	\ldots
December	$334+\mathrm{i}$

(See "Days in Year" in Reference Information)

Chapter \#2: Solar Geometry

Sun position from earth

- Sun rise in the east and set in the west
- "A" sees sun in south
- "B" sees sun in north

Chapter \#2: Solar Geometry

Solar noon

Chapter \#2: Solar Geometry

Solar altitude angle

- Solar altitude angle $\left(\alpha_{s}\right)$ is the angle between horizontal and the line passing through sun
- It changes every hour and every day

Chapter \#2: Solar Geometry

Solar altitude angle at noon

Solar altitude angle is maximum at "Noon" for a day, denoted by $\alpha_{s, \text { noon }}$

Chapter \#2: Solar Geometry

Zenith angle

- Zenith angle $\left(\theta_{2}\right)$ is the angle between vertical and the line passing through sun
- $\theta_{z}=90-\alpha_{s}$

Chapter \#2: Solar Geometry

Zenith angle at noon

- Zenith angle is minimum at "Noon" for a day, denoted by $\theta_{z, n o o n}$
- $\theta_{z, \text { noon }}=90-\alpha_{s, n o o n}$

Air mass

- Another representation of solar altitude/zenith angle.
- Air mass (A.M.) is the ratio of mass of atmosphere through which beam passes, to the mass it would pass through, if the sun were directly overhead.

$$
A . M .=1 / \cos \theta_{z}
$$

If A.M. $=1 \Rightarrow \theta_{z}=0^{\circ}$ (Sun is directly overhead)
If A.M. $=2=>\theta_{z}=60^{\circ}$ (Sun is away, a lot of mass of air is present between earth and sun)

Chapter \#2: Solar Geometry

Air mass

Solar azimuth angle

- In any hemisphere, solar azimuth angle $\left(\gamma_{s}\right)$ is the angular displacement of sun from south
- It is 0° due south, -ve in east, +ve in west

Chapter \#2: Solar Geometry

Solar declination

Important! $\longrightarrow \mathbf{2 3 . 4 5}{ }^{\circ}$ March equinox

Equator faces sun directly (Spring)
June solstice Northern hemisphere is towards sun (Summer)

September equinox Equator faces sun directly (Autumn)

Solar declination (at solstice)

June solstice
(Noon)

December solstice

A sees sun in north.
B sees sun overhead.
C sees sun in south.

A sees sun in south.
B sees sun in more south.
C sees sun in much more south.

Solar declination (at equinox)

March equinox

A sees sun directly overhead B sees sun in more south
\mathbf{C} sees sun in much more south

Same situation happen during September equinox.
(Noon)

Chapter \#2: Solar Geometry

Solar declination

Latitude from frame of reference of horizontal ground beneath feet

Chapter \#2: Solar Geometry

Solar declination

Note: Altitude depends upon latitude but declination is independent.

Solar declination

- For any day in year, solar declination (δ) can be calculated as:

$$
\delta=23.45 \sin \left(360\left(\frac{284+n}{365}\right)\right)
$$

Where, $\mathrm{n}=$ number $^{\text {th }}$ day of year
(See "Days in Year" in Reference Information)

- Maximum: 23.45°, Minimum: - 23.45°
- Solar declination angle represents "day"
- It is independent of time and location!

Chapter \#2: Solar Geometry

Solar declination

Days to Remember	$\boldsymbol{\delta}$
March, 21	0°
June, 21	$+23.45^{\circ}$
September, 21	0°
December, 21	-23.45°

Can you prove this?

Solar altitude and zenith at noon

- As solar declination (δ) is the function of day (n) in year, therefore, solar altitude at noon can be calculated as:

$$
\alpha_{s, \text { noon }}=90-\varnothing+\delta
$$

- Similarly zenith angle at noon can be calculated as:

$$
\theta_{z, \text { noon }}=90-\alpha_{s, \text { noon }}=90-(90-\varnothing+\delta)=\varnothing-\delta
$$

Chapter \#2: Solar Geometry

Solar time

- The time in your clock (local time) is not same as "solar time"
- It is always "Noon" at 12:00pm solar time

Solar time "Noon"

Local time (in your clock)

Solar time

The difference between solar time (ST) and local time (LT) can be calculated as:

$$
S T-L T=E-\frac{4 \times(S L-L L)}{60}
$$

Where,
ST: Solar time (in 24 hours format)
LT: Local time (in 24 hours format)
SL: Standard longitude (depends upon GMT)
LL: Local longitude (+ve for east, -ve for west)
E : Equation of time (in hours)
Try: http://www.powerfromthesun.net/soltimecalc.html

Solar time

- Standard longitude (SL) can be calculated as:

$$
\mathrm{SL}=(G M T \times 15)
$$

- Where GMT is Greenwich Mean Time, roughly:

If LL > 0 (Eastward):

$$
G M T=\operatorname{ceil}(L L / 15)
$$

If LL < 0 (Westward):

$$
G M T=- \text { floor }(|L L| / 15)
$$

- GMT for Karachi is 5, GMT for Tehran is 3.5.
- It is recommended to find GMT from standard database e.g. http://wwp.greenwichmeantime.com/

Solar time

- The term Equation of time (E) is because of earth's tilt and orbit eccentricity.
- It can be calculated as:

$$
E=\frac{229.2}{60} \times\left(\begin{array}{c}
0.000075 \\
+0.001868 \cos B \\
-0.032077 \sin B \\
-0.014615 \cos 2 B \\
-0.04089 \sin 2 B
\end{array}\right)
$$

Where,

$$
B=(n-1) 360 / 365
$$

Hour angle

- Hour angle (ω) is another representation of solar time
- It can be calculated as:

$$
\omega=(S T-12) \times 15
$$

(-ve before solar noon, +ve after solar noon)

$$
\begin{array}{c|c|c}
\text { 11:00am } & \text { 12:00pm } & 01: 00 \mathrm{pm} \\
\omega=-15^{\circ} & \omega=0^{\circ} & \omega=+15^{\circ}
\end{array}
$$

A plane at earth's surface

- Tilt, pitch or slope angle: β (in degrees)
- Surface azimuth or orientation: γ (in degrees, 0° due south, -ve in east, +ve in west)

Chapter \#2: Solar Geometry

Summary of solar angles

Can you write symbols of different solar angles shown in this diagram?

Interpretation of solar angles

Angle		Interpretation
Latitude	ϕ	Site location
Declination	δ	Day (Sun position)
Hour angle	ω	Time (Sun position)
Solar altitude	α_{s}	Sun direction (Sun position)
Zenith angle	θ_{z}	Sun direction (Sun position)
Solar azimuth	γ_{s}	Sun direction (Sun position)
Tilt angle	β	Plane direction
Surface azimuth	γ	Plane direction

Chapter \#2: Solar Geometry

Angle of incidence

Angle of incidence (θ) is the angle between normal of plane and line which is meeting plane and passing through the sun

Angle of incidence

- Angle of incidence (θ) depends upon:
- Site location (1): $\quad \theta$ changes place to place
- Sun position (2/3): θ changes in every instant of time and day
- Plane direction (4): θ changes if plane is moved
- It is 0° for a plane directly facing sun and at this angle, maximum solar radiations are collected by plane.

Angle of incidence

If the sun position is known in terms of declination (day) and hour angle, angle of incidence (θ) can be calculated as:

$\cos \theta$
$=\sin \delta \sin \emptyset \cos \beta-\sin \delta \cos \emptyset \sin \beta \cos \gamma$
$+\cos \delta \cos \emptyset \cos \beta \cos \omega$
$+\cos \delta \sin \emptyset \sin \beta \cos \gamma \cos \omega$
$+\cos \delta \sin \beta \sin \gamma \sin \omega$

Angle of incidence

If the sun position is known in terms of sun direction (i.e. solar altitude/zenith and solar azimuth angles), angle of incidence (θ) can be calculated as:

$$
\cos \theta=\cos \theta_{z} \cos \beta+\sin \theta_{z} \sin \beta \cos \left(\gamma_{s}-\gamma\right)
$$

Remember, $\theta_{z}=90-\alpha_{\text {s }}$
Note: Solar altitude/zenith angle and solar azimuth angle depends upon location.

Special cases for angle of incidence

- If the plane is laid horizontal $\left(\beta=0^{\circ}\right)$
- Equation is independent of γ (rotate!)
$-\theta$ becomes θ_{z} because normal to the plane becomes vertical, hence:
$\cos \theta_{z}=\cos \emptyset \cos \delta \cos \omega+\sin \emptyset \sin \delta$
Remember, $\theta_{z}=90-\alpha_{s}$
Note: Solar altitude/zenith angle depends upon location, day and hour.

Solar altitude and azimuth angle

Solar altitude angle (α_{s}) can be calculated as:

$$
\sin \alpha_{s}=\cos \emptyset \cos \delta \cos \omega+\sin \emptyset \sin \delta
$$

Solar azimuth angle (ν_{s}) can be calculated as:

$$
\gamma_{s}=\operatorname{sign}(\omega)\left|\cos ^{-1}\left(\frac{\cos \theta_{z} \sin \emptyset-\sin \delta}{\sin \theta_{z} \cos \emptyset}\right)\right|
$$

Chapter \#2: Solar Geometry

Sun path diagram or sun charts

Note: These diagrams are different for different latitudes.

Shadow analysis (objects at distance)

- Shadow analysis for objects at distance (e.g. trees, buildings, poles etc.) is done to find:
- Those moments (hours and days) in year when plane will not see sun.
- Loss in total energy collection due to above.
- Mainly, following things are required:
- Sun charts for site location
- Inclinometer
- Compass and information of M.D.

Chapter \#2: Solar Geometry

Inclinometer

A simple tool for finding azimuths and altitudes of objects

Chapter \#2: Solar Geometry

Shadow analysis using sun charts

OCl

Sunset hour angle and daylight hours

- Sunset occurs when $\theta_{z}=90^{\circ}$ (or $\alpha_{s}=0^{\circ}$). Sunset hour angle (ω_{s}) can be calculated as:

$$
\cos \omega_{s}=-\tan \emptyset \tan \delta
$$

- Number of daylight hours (N) can be calculated as:

$$
N=\frac{2}{15} \omega_{s}
$$

For half-day (sunrise to noon or noon to sunrise), number of daylight hours will be half of above.

Chapter \#2: Solar Geometry

Profile angle

It is the angle through which a plane that is initially horizontal must be rotated about an axis in the plane of the given surface in order to include the sun.

Chapter \#2: Solar Geometry

Profile angle

- It is denoted by α_{p} and can be calculated as follow:

$$
\tan \alpha_{p}=\frac{\tan \alpha_{s}}{\cos \left(\gamma_{s}-\gamma\right)}
$$

- It is used in calculating shade of one collector (row) on to the next collector (row).
- In this way, profile angle can also be used in calculating the minimum distance between collector (rows).

Chapter \#2: Solar Geometry

Profile angle

- Collector-B will be in shade of collector-A, only when:

$$
\alpha_{p}<\bar{\beta}
$$

Angles for tracking surfaces

- Some solar collectors "track" the sun by moving in prescribed ways to minimize the angle of incidence of beam radiation on their surfaces and thus maximize the incident beam radiation.
- Tracking the sun is much more essential in concentrating systems e.g. parabolic troughs and dishes.
(See "Tracking surfaces" in Reference
 Information)

Chapter \#3: Solar Radiations

Types of solar radiations

1. Types by components:

Total $=$ Beam + Diffuse

Types of solar radiations

2. Types by terrestre:

Extraterrestrial

- Solar radiations received on earth without the presence of atmosphere OR solar radiations received outside earth atmosphere.
- We always calculate these radiations.

Terrestrial

- Solar radiations received on earth in the presence of atmosphere.
- We can measure or estimate these radiations. Ready databases are also available e.g. TMY.

Measurement of solar radiations

1. Magnitude of solar radiations:

Irradiance \quad Irradiation/Insolation

- Rate of
energy
(power) received per unit area
- Symbol: G
- Unit: W/m²

Energy received per unit area in a given time Hourly: I \mid Daily: $\mathbf{H} \mid$ Monthly avg. daily: $\overline{\mathbf{H}}$ Unit: J/m² Unit: J/m² Unit: J/m²

Measurement of solar radiations

2. Tilt (β) and orientation (γ) of measuring instrument:

- Horizontal ($\beta=0^{\circ}$, irrespective of γ)
- Normal to sun ($\beta=\theta_{z}, \gamma=\gamma_{s}$)
- Tilt (any β, γ is usually 0°)
- Latitude ($\beta=\varnothing, \gamma$ is usually 0°)

Representation of solar radiations

- Symbols:
- Irradiance: G

- Irradiations:
\mathbf{I} (hourly), \mathbf{H} (daily), $\overline{\mathbf{H}}$ (monthly average daily)
- Subscripts:
-Ex.terr.: 0
-Beam: b
-Normal: \mathbf{n} Tilt: \mathbf{T}

Terrestrial: -
Total -
Horizontal -

Extraterrestrial solar radiations

Mathematical integration...

Solar constant $\left(\mathrm{G}_{\text {sc }}\right)$

Extraterrestrial solar radiations received at normal, when earth is at an average distance (1 au) away from sun.

$$
G_{s c}=1367 \mathrm{~W} / \mathrm{m}^{2}
$$

Adopted by World Radiation Center (WRC)

Ex.terr. irradiance at normal

Extraterrestrial solar radiations received at normal. It deviates from $G_{s c}$ as the earth move near or away from the sun.

$$
G_{o n}=G_{s c}\left(1+0.033 \cos \frac{360 n}{365}\right)
$$

Ex.terr. irradiance on horizontal

Extraterrestrial solar radiations received at horizontal. It is derived from $G_{o n}$ and therefore, it deviates from $G_{s c}$ as the earth move near or away from the sun.
$G_{o}=G_{o n} \times(\cos \emptyset \cos \delta \cos \omega+\sin \emptyset \sin \delta)$

Chapter \#3: Solar Radiations

Ex.terr. hourly irradiation on horizontal

I_{o}
$=\frac{12 \times 3600}{\pi} G_{s c} \times\left(1+0.033 \cos \frac{360 n}{365}\right)$
$\times\left[\cos \emptyset \cos \delta\left(\sin \omega_{2}-\sin \omega_{1}\right)\right.$

Chapter \#3: Solar Radiations

Ex.terr. daily irradiation on horizontal

H_{o}
$=\frac{24 \times 3600}{\pi} G_{s c} \times\left(1+0.033 \cos \frac{360 n}{365}\right)$
$\times\left[\cos \emptyset \cos \delta \sin \omega_{s}+\frac{\pi \omega_{s}}{180} \sin \emptyset \sin \delta\right]$

Chapter \#3: Solar Radiations

Ex.terr. monthly average daily irradiation on horizontal

\bar{H}_{o}
$=\frac{24 \times 3600}{\pi} G_{s c} \times\left(1+0.033 \cos \frac{360 n}{365}\right)$
$\times\left[\cos \emptyset \cos \delta \sin \omega_{s}+\frac{\pi \omega_{s}}{180} \sin \emptyset \sin \delta\right]$

Where day and time dependent parameters are calculated on average day of a particular month i.e. $n=\bar{n}$

Terrestrial radiations

Can be...

- measured by instruments
- obtained from databases e.g. TMY, NASA SSE etc.
- estimated by different correlations

Terrestrial radiations measurement

- Total irradiance can be measured using Pyranometer
- Diffuse irradiance can be measured using Pyranometer with shading ring

Terrestrial radiations measurement

- Beam irradiance can be measured using Pyrheliometer

- Beam irradiance can also be measured by taking difference in readings of pyranometer with and without shadow band:
beam = total - diffuse

Terrestrial radiations databases

1. NASA SSE:

Monthly average daily total irradiation on horizontal surface (\bar{H}) can be obtained from NASA Surface meteorology and Solar Energy (SSE) Database, accessible from:
http://eosweb.larc.nasa.gov/sse/RETScreen/
(See "NASA SSE" in Reference Information)

Terrestrial radiations databases

2. TMY files:

Information about hourly solar radiations can be obtained from Typical Meteorological Year files.
(See "TMY" section in Reference Information)

Terrestrial irradiation estimation

- Angstrom-type regression equations are generally used:

$$
\frac{\bar{H}}{\bar{H}_{o}}=a+b \frac{\bar{n}}{\bar{N}}
$$

(See "Terrestrial Radiations Estimations" section in Reference Information)

Terrestrial irradiation estimation

For Karachi:
$\frac{\bar{H}}{\bar{H}_{o}}=0.324+0.405 \frac{\bar{n}}{\bar{N}}$
Where,
\bar{n} is the representation of cloud cover and \bar{N} is the day length of average day of month.

Month	\bar{n} / \bar{N}
Jan	0.805
Feb	0.776
Mar	0.762
Apr	0.738
May	0.743
Jun	0.595
Jul	0.381
Aug	0.390
Sep	0.602
Oct	0.818
Nov	0.837
Dec	0.830

Clearness index

- A ratio which mathematically represents sky clearness.
=1 (clear day)
<1 (not clear day)
- Used for finding:
- frequency distribution of various radiation levels
-diffuse components from total irradiations

Chapter \#3: Solar Radiations

Clearness index

1. Hourly clearness index:

$$
k_{T}=\frac{I}{I_{o}}
$$

2. Daily clearness index:

$$
K_{T}=\frac{H}{H_{o}}
$$

3. Monthly average daily clearness index:

$$
\bar{K}_{T}=\frac{\bar{H}}{\bar{H}_{o}}
$$

Chapter \#3: Solar Radiations

Diffuse component of hourly irradiation (on horizontal)

Orgill and Holland correlation:

$$
\frac{I_{d}}{I}=\left\{\begin{array}{rc}
1-0.249 k_{T}, & k_{T} \leq 0.35 \\
1.557-1.84 k_{T}, & 0.35<k_{T}<0.75 \\
0.177, & k_{T} \geq 0.75
\end{array}\right.
$$

Chapter \#3: Solar Radiations

Diffuse component of daily irradiation (on horizontal)

Collares-Pereira and Rabl correlation:

$$
\frac{H_{d}}{H}=\left\{\begin{array}{cc}
0.99, & K_{T} \leq 0.17 \\
1.188-2.272 K_{T} \\
+9.473 K_{T}{ }^{2} \\
-21.865 K_{T}{ }^{3} \\
+14.648 K_{T}{ }^{4}
\end{array}\right\}, \quad 0.17<K_{T}<0.75
$$

Chapter \#3: Solar Radiations

Diffuse component of monthly average daily irradiation (on horizontal)

Collares-Pereira and Rabl correlation:

$\frac{\bar{H}_{d}}{\bar{H}}$
$=0.775+0.00606\left(\omega_{s}-90\right)$
- [0.505

Chapter \#3: Solar Radiations

Hourly total irradiation from daily irradiation (on horizontal)

For any mid-point (ω) of an hour,

$$
I=r_{t} H
$$

According to Collares-Pereira and Rabl:

$$
r_{t}=\frac{\pi}{24}(a+b \cos \omega) \frac{\cos \omega-\cos \omega_{s}}{\sin \omega_{s}-\frac{\pi \omega_{s}}{180} \cos \omega_{s}}
$$

Where,

$$
\begin{aligned}
& a=0.409+0.5016 \sin \left(\omega_{s}-60\right) \\
& b=0.6609-0.4767 \sin \left(\omega_{s}-60\right)
\end{aligned}
$$

Chapter \#3: Solar Radiations
Hourly diffuse irradiations from daily diffuse irradiation (on horizontal)

For any mid-point (ω) of an hour,

$$
I_{d}=r_{d} H_{d}
$$

From Liu and Jordan:

$$
r_{d}=\frac{\pi}{24} \frac{\cos \omega-\cos \omega_{s}}{\sin \omega_{s}-\frac{\pi \omega_{s}}{180} \cos \omega_{s}}
$$

Air mass and radiations

- Terrestrial radiations depends upon the path length travelled through atmosphere. Hence, these radiations can be characterized by air mass (AM).
- Extraterrestrial solar radiations are symbolized as AMO.
- For different air masses, spectral distribution of solar radiations is different.

Chapter \#3: Solar Radiations
Air mass and radiations

Air mass and radiations

- The standard spectrum at the Earth's surface generally used are:
- AM1.5G, (G = global)
- AM1.5D (D = direct radiation only)
- $\mathrm{AM1.5D}=28 \%$ of $\mathrm{AM0}$
18% (absorption) + 10\% (scattering).
- $\mathrm{AM} 1.5 \mathrm{G}=110 \% \mathrm{AM} 1.5 \mathrm{D}=970 \mathrm{~W} / \mathrm{m}^{2}$.

Chapter \#3: Solar Radiations

Air mass and radiations

Radiations on a tilted plane

To calculate radiations on a tilted plane, following information are required:

- tilt angle
- total, beam and diffused components of radiations on horizontal (at least two of these)
- diffuse sky assumptions (isotropic or anisotropic)
- calculation model

Chapter \#3: Solar Radiations

Diffuse sky assumptions

Diffuse sky assumptions

Diffuse radiations consist of three parts:

1. Isotropic (represented by: iso)
2. Circumsolar brightening (represented by :cs)
3. Horizon brightening (represented by : hz)

There are two types of diffuse sky assumptions:

1. Isotropic sky (iso)
2. Anisotropic sky (iso +cs , iso $+\mathrm{cs}+\mathrm{hz}$)

General calculation model

$$
X_{T}=X_{b} R_{b}+X_{d, i s o} F_{c-s}+X_{d, c s} R_{b}+X_{d, h z} F_{c-h z}+X \rho_{g} F_{c-g}
$$

Where,

- X, X_{b}, X_{d} : total, beam and diffuse radiations (irradiance or irradiation) on horizontal
- iso, cs and hz: isotropic, circumsolar and horizon brightening parts of diffuse radiations
- R_{b} : beam radiations on tilt to horizontal ratio
- $\mathrm{F}_{\mathrm{c}-\mathrm{s}}, \mathrm{F}_{\mathrm{c}-\mathrm{hz}}$ and $\mathrm{F}_{\mathrm{c}-\mathrm{g}}$: shape factors from collector to sky, horizon and ground respectively
- ρ_{g} : albedo

Calculation models

1. Liu and Jordan (LJ) model (iso, $\gamma=0^{\circ}, I$)
2. Liu and Jordan (LJ) model (iso, $\gamma=0^{\circ}, \bar{H}$)
3. Hay and Davies (HD) model (iso+cs, $\gamma=0^{\circ}, I$)
4. Hay, Davies, Klucher and Reindl (HDKR) model (iso+cs+hz, $\gamma=0^{\circ}, I$)
5. Perez model (iso+cs+hz, $\gamma=0^{\circ}, I$)
6. Klein and Theilacker (K-T) model (iso+cs, $\gamma=0^{\circ}, \bar{H}$)
7. Klein and Theilacker (K-T) model (iso+cs, \bar{H})
(See "Sky models" in Reference Information)

Chapter \#3: Solar Radiations

Optimum tilt angle

Spring Summer
Autumn

Winter

Introduction

1. Flat-plate collectors are special type of heat-exchangers
2. Energy is transferred to fluid from a distant source of radiant energy
3. Incident solar radiations is not more than $1100 \mathrm{~W} / \mathrm{m}^{2}$ and is also variable
4. Designed for applications requiring energy delivery up to $100^{\circ} \mathrm{C}$ above ambient temperature.

Introduction

1. Use both beam and diffuse solar radiation
2. Do not require sun tracking and thus require low maintenance
3. Major applications: solar water heating, building heating, air conditioning and industrial process heat.

Chapter \#4:Flat-Plate Collectors

Installation of flat-plate collectors at Mechanical Engineering Department, NED University of Engg. \& Tech., Pakistan

Heat transfer: Fundamental

Heat transfer, in general:
$q=Q / A=\left(T_{1}-T_{2}\right) / R=\Delta T / R=U \Delta T\left[\mathrm{~W} / \mathrm{m}^{2}\right]$
Where,
$T_{1}>T_{2}$: Heat is transferred from higher to lower temperature
ΔT is the temperature difference
R is the thermal resistance
A is the heat transfer area
U is overall H.T. coeff. $U=1 / R$
[K]
[$\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$]
[m^{2}]
$\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]_{45}$

Heat transfer: Circuits

Resistances in series:

$$
\begin{aligned}
& R=R_{1}+R_{2} \\
& U=\frac{1}{R_{1}+R_{2}}
\end{aligned}
$$

Resistances in parallel:

$$
\begin{aligned}
& R=\frac{1}{1 / R_{1}+1 / R_{2}} \\
& U=1 / R_{1}+1 / R_{2}
\end{aligned}
$$

Example-1 Heat transfer: Circuits

Determine the heat transfer per unit area(q) and overall heat transfer coefficient (U) for the following circuit:

Heat transfer: Radiation

Radiation heat transfer between two infinite parallel plates:
$R_{r}=\mathbf{1} / h_{r}$
and,
$h_{r}=\frac{\sigma\left(T_{1}{ }^{2}+T_{2}{ }^{2}\right)\left(T_{1}+T_{2}\right)}{\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{2}}-1}$
Where,
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
ϵ is the emissivity of a plate

Heat transfer: Radiation

Radiation heat transfer between a small object surrounded by a large enclosure:
$R_{r}=\mathbf{1} / h_{r}$ and,
$h_{r}=\frac{\sigma\left(T_{1}{ }^{2}+T_{2}{ }^{2}\right)\left(T_{1}+T_{2}\right)}{1 / \varepsilon}$
$=\varepsilon \sigma\left(T_{1}{ }^{2}+T_{2}{ }^{2}\right)\left(T_{1}+T_{2}\right)$

Heat transfer: Sky Temperature

1. Sky temperature is denoted by T_{s}
2. Generally, $\mathbf{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{a}}$ may be assumed because sky temperature does not make much difference in evaluating collector performance.
3. For a bit more accuracy:

In hot climates: $\quad \mathbf{T}_{\mathbf{s}}=\mathbf{T}_{\mathbf{a}}+\mathbf{5}^{\circ} \mathrm{C}$
In cold climates: $\quad \mathrm{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{a}}+\mathbf{1 0} \mathbf{0}^{\circ} \mathrm{C}$

Heat transfer: Convection

Convection heat transfer between parallel plates:
$\boldsymbol{R}_{\boldsymbol{c}}=\mathbf{1} / h_{c} \quad$ and $\quad h_{c}=N_{u} k / L$
Where,
$N_{u}=1+$
$1.44\left[1-\frac{1708(\sin 1.8 \beta)^{1.6}}{R_{a} \cos \beta}\right]\left[1-\frac{1708}{R_{a} \cos \beta}\right]^{+}$
$+\left[\left(\frac{R_{a} \cos \beta}{5830}\right)^{1 / 3}-1\right]^{+}$
Note: Above is valid for tilt angles between 0° to 75°.
' + ' indicates that only positive values are to be considered. Negative values should be discarded.

Heat transfer: Convection

$R_{a}=\frac{g \beta^{\prime} \Delta T L^{3}}{\vartheta \alpha}$ also $P_{r}=\vartheta / \alpha$
Where,
Fluid properties are evaluated at mean temperature
Ra Rayleigh number
Pr Prandtl number
L plate spacing
k thermal conductivity
g gravitational constant
$\beta^{\prime} \quad$ volumetric coefficient of expansion
for ideal gas, $\beta^{\prime}=1 / T \quad\left[K^{-1}\right]$
$\vartheta, \alpha \quad$ kinematic viscosity and thermal diffusivity

Heat transfer: Conduction

Conduction heat transfer through a material:
$R_{k}=L / k$

Where,
L material thickness
[m]
k thermal conductivity $\quad[\mathrm{W} / \mathrm{mK}]$

General energy balance equation

In steady-state:
Useful Energy = Incoming Energy - Energy Loss
[W]
$Q_{u}=A_{c}\left[S-U_{L}\left(T_{p m}-T_{a}\right)\right]$
Incoming Energy
$\mathrm{A}_{\mathrm{c}}=$ Collector area $\left[\mathrm{m}^{2}\right.$]
$\mathrm{T}_{\mathrm{pm}}=$ Absorber plate temp. [K]
$\mathrm{T}_{\mathrm{a}}=$ Ambient temp. [K]
$\mathrm{U}_{\mathrm{L}}=$ Overall heat loss coeff. [W/m²K]
$\mathrm{Q}_{\mathrm{u}}=$ Useful Energy [W]
$\mathrm{SA}_{\mathrm{c}}=$ Incoming (Solar) Energy [W]
$\mathrm{A}_{\mathrm{c}} \mathrm{U}_{\mathrm{L}}\left(\mathrm{T}_{\mathrm{pm}}-\mathrm{T}_{\mathrm{a}}\right)=$ Energy Loss [W]

Useful Energy

Thermal network diagram

Thermal network diagram

Cover temperature

1. Ambient and plate temperatures are generally known.
2. $U_{\text {top }}$ can be calculated as:

$$
U_{\text {top }}=1 /\left(R_{(c-a)}+R_{(p-c)}\right)
$$

3. From energy balance:

$$
\begin{gathered}
\mathrm{q}_{p-c}=\mathrm{q}_{\mathrm{p}-\mathrm{a}} \\
\left(\mathrm{~T}_{\mathrm{p}}-T_{\mathrm{c}}\right) / R_{(p-c)}=U_{\text {top }}\left(T_{p}-T_{a}\right) \\
\Rightarrow>T_{c}=T_{p}-U_{\text {top }}\left(T_{p}-T_{a}\right) \times R_{(p-c)}
\end{gathered}
$$

Thermal resistances

$$
\begin{aligned}
& R_{r(c-a)}=1 / h_{r(c-a)}=1 / \varepsilon_{c} \sigma\left(T_{a}^{2}+T_{c}^{2}\right)\left(T_{a}+T_{c}\right) \\
& R_{c(c-a)}=1 / h_{c(c-a)}=1 / h_{w} \\
& R_{r(p-c)}=1 / h_{r(p-c)}=1 /\left[\sigma\left(T_{c}^{2}+T_{p}^{2}\right)\left(T_{c}+T_{p}\right) /\left(1 / \varepsilon_{c}+1 / \varepsilon_{p}-1\right)\right] \\
& R_{c(p-c)}=1 / h_{c(p-c)}=1 / h_{c} \\
& R_{k(p-b)}=L / k \\
& R_{r(b-a)}=1 / h_{r(b-a)}=1 / \varepsilon_{b} \sigma\left(T_{a}^{2}+T_{b}^{2}\right)\left(T_{a}+T_{b}\right) \\
& R_{c(b-a)}=1 / h_{c(b-a)}=1 / h_{w}
\end{aligned}
$$

Chapter \#4:Flat-Plate Collectors

Solution methodology

