
Chapter 6

Using Entropy



Learning Outcomes

►Demonstrate understanding of key 
concepts related to entropy and the 
second law . . . including entropy transfer, 
entropy production, and the increase in 
entropy principle.entropy principle.

►Evaluate entropy, evaluate entropy 
change between two states, and analyze
isentropic processes, using appropriate 
property tables.



Learning Outcomes, cont.

►Represent heat transfer in an internally 
reversible process as an area on a 
temperature-entropy diagram.

►Apply entropy balances to closed systems ►Apply entropy balances to closed systems 
and control volumes.

►Evaluate isentropic efficiencies for 
turbines, nozzles, compressors, and 
pumps.



Introducing Entropy Change and the 
Entropy Balance

►Mass and energy are familiar extensive 
properties of systems.  Entropy is another 
important extensive property.

►Just as mass and energy are accounted ►Just as mass and energy are accounted 
for by mass and energy balances, entropy 
is accounted for by an entropy balance.

►Like mass and energy, entropy can be 
transferred across the system boundary.



Introducing Entropy Change and the 
Entropy Balance

►The entropy change and entropy balance 
concepts are developed using the Clausius 
inequality expressed as:
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(Eq. 5.13)cycle
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(Eq. 5.13)

where

σσσσcycle = 0  no irreversibilities present within the system
σσσσcycle > 0  irreversibilities present within the system
σσσσcycle < 0  impossible

Eq.
5.14



Defining Entropy Change

►Consider two cycles, each composed 
of two internally reversible processes,  
process A plus process C and 
process B plus process C, as shown 
in the figure.in the figure.

►Applying Eq. 5.13to these cycles gives,

where σcycle is zero because the cycles are 
composed of internally reversible processes.



Defining Entropy Change

►Subtracting these equations:

►Since A and B are arbitrary internally reversible 
processes linking states 1 and 2, it follows that the 
value of the integral is independent of the value of the integral is independent of the 
particular internally reversible process and 
depends on the end states only.



Defining Entropy Change

►Recalling (from Sec. 1.3.3) that a quantity is a property if, 
and only if, its change in value between two states is 
independent of the process linking the two states, we 
conclude that the integral represents the change in some 
property of the system.

►We call this property entropy and represent it by S.  The 
change in entropy is

where the subscript “int rev” signals that the integral is 
carried out for any internally reversible process linking 
states 1 and 2.

(Eq. 6.2a)



Defining Entropy Change

►Equation 6.2aallows the change in entropy between 
two states to be determined by thinking of an internally 
reversible process between the two states.  But since 
entropy is a property, that value of entropy change
applies to any process between the states – internally 
reversible or not.reversible or not.

►Entropy change is introduced by the integral of Eq. 6.2a
for which no accompanying physical picture is given.  
Still, the aim of Chapter 6 is to demonstrate that entropy 
not only has physical significance but also is essential for 
thermodynamic analysis.



Entropy Facts

►Entropy is an extensive property.
►Like any other extensive property, the change in 

entropy can be positive, negative, or zero:

►By inspection of Eq. 6.2a, units for entropy S are 
kJ/K.

►Units for specific entropy s are kJ/kg·K.



Entropy Facts

►For problem solving, specific entropy values are provided in 
Tables A-2 through A-18.  Values for specific entropy are 
obtained from these tables using the same procedures as 
for specific volume, internal energy, and enthalpy, including 
use of

(Eq. 6.4)(Eq. 6.4)

for two-phase liquid-vapor mixtures, and

(Eq. 6.5)

for liquid water, each of which is similar in form to 
expressions introduced in Chap. 3 for evaluating v, u, and h.



Entropy Facts

►For problem solving, states often are shown on 
property diagrams having specific entropy as a 
coordinate:  the temperature-entropy and 
enthalpy-entropy (Mollier) diagrams shown here



Entropy and Heat Transfer

►By inspection of Eq. 6.2a, the defining equation for 
entropy change on a differential basis is

(Eq. 6.2b)

►Equation 6.2b indicates that when a closed system ►Equation 6.2b indicates that when a closed system 
undergoing an internally reversible process receives 
energy by heat transfer, the system experiences an 
increase in entropy.  Conversely, when energy is removed 
by heat transfer, the entropy of the system decreases.  
From these considerations, we say that entropy transfer 
accompanies heat transfer.  The direction of the entropy 
transfer is the same as the heat transfer.



Entropy and Heat Transfer

►On rearrangement, Eq. 6.2bgives

► In an internally reversible, adiabatic process (no heat 
transfer), entropy remains constant.  Such a constant-
entropy process is called an isentropic process.

Integrating from state 1 to state 2,

(Eq. 6.23)



Entropy and Heat Transfer

From this it follows that 
an energy transfer by 
heat to a closed system
during an internally 
reversible process is 
represented by an area 
on a temperature-entropy 
diagram:



Entropy Balance for Closed Systems

►The entropy balance for closed systems can be 
developed using the Clausius inequality expressed as 
Eq. 5.13and the defining equation for entropy change, 
Eq. 6.2a.  The result is

(Eq. 6.24)

where the subscript b
indicates the integral 
is evaluated at the (Eq. 6.24)

► In accord with the interpretation of σσσσcycle in the Clausius 
inequality, Eq. 5.14, the value of σσσσ in Eq. 6.24adheres to the 
following interpretation

= 0 (no irreversibilities present within the system)
> 0 (irreversibilities present within the system)
< 0 (impossible)

σσσσ:

is evaluated at the 
system boundary.



Entropy Balance for Closed Systems

►That σσσσ has a value of zero when there are no internal 
irreversibilities and is positive when irreversibilities are 
present within the system leads to the interpretation that 
σσσσ accounts for entropy produced (or generated) within the 
system by action of irreversibilities.system by action of irreversibilities.

►Expressed in words, the entropy balance is

change in the amount 
of entropy contained 

within the system 
during some
time interval

net amount of
entropy transferred in

across the system boundary
accompanying heat transfer
during some time interval

amount of
entropy produced
within the system 

during some
time interval

+



Entropy Balance for Closed Systems

Example: One kg of water vapor contained 
within a piston-cylinder assembly, initially at 
5 bar, 400oC, undergoes an adiabatic 
expansion to a state where pressure is 1 bar
and the temperature is (a) 200oC, (b) 100oC.  
Using the entropy balance, determine the Boundary

►Since the expansion occurs adiabatically, Eq. 6.24
reduces to give

Using the entropy balance, determine the 
nature of the process in each case.
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→ m(s2 – s1) = σσσσ (1)

where m = 1 kg and Table A-4 gives s1 = 7.7938 kJ/kg·K .



Entropy Balance for Closed Systems

(a) Table A-4 gives, s2 = 7.8343 kJ/kg·K .  Thus 
Eq. (1) gives

σ = (1 kg)(7.8343 – 7.7938) kJ/kg·K = 0.0405 kJ/K

Since σσσσ is positive, irreversibilities are present within 
the system during expansion (a).the system during expansion (a).

(b) Table A-4 gives, s2 = 7.3614 kJ/kg·K .  Thus 
Eq. (1) gives
σ = (1 kg)(7.3614 – 7.7938) kJ/kg·K = –0.4324 kJ/K

Since σσσσ is negative, expansion (b) is impossible:  it 
cannot occur adiabatically.



Entropy Balance for Closed Systems

More about expansion (b): Considering Eq. 6.24

► Since σσσσ cannot be negative and

► For expansion (b) ∆∆∆∆S is negative, then

► By inspection the integral must be negative and 
so heat transfer from the system must occur in 
expansion (b).  

= +< 0 ≥ 0< 0



Entropy Rate Balance for Closed Systems

►On a time rate basis, the closed system entropy 
rate balance is

(Eq. 6.28)

where

=
dt

dS

where

the time rate of change of the entropy of the 
system

=
j

j

T

Q&
the time rate of entropy transfer through the 
portion of the boundary whose temperature is Tj

time rate of entropy production due to 
irreversibilities within the system

=σ&



Example: An inventor claims that the device shown 
generates electricity at a rate of 100 kJ/s while receiving a 
heat transfer of energy at a rate of 250 kJ/sat a temperature 
of 500 K, receiving a second heat transfer at a rate of 350 
kJ/s at 700 K, and discharging energy by heat transfer at a 
rate of 500 kJ/sat a temperature of 1000 K.  Each heat 
transfer is positive in the direction of the accompanying 

Entropy Rate Balance for Closed Systems

transfer is positive in the direction of the accompanying 
arrow.  For operation at steady state, evaluate this claim.

kJ/s 3502 =Q&

kJ/s 2501 =Q&

+

–

T1 = 500 K

T2 = 700 K

T3 = 1000 K kJ/s 5003 =Q&

kJ/s 3502 =Q&

kJ/s 2501 =Q&

+

–

T1 = 500 K

T2 = 700 K

T3 = 1000 K kJ/s 5003 =Q&



►Applying an entropy rate balance 

Entropy Rate Balance for Closed Systems

kJ/s 100=−+= kJ/s 500kJ/s 350kJ/s 250eW&

eWQQQ
dt

dE
&&&& −−+== 3210

σ
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►Applying an energy rate balance 
at steady state

Solving

The claim is in accord with the first law of thermodynamics.

0

0
►Applying an entropy rate balance 

at steady state
σ&
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Solving

( )
K

kJ/s
0.5−=−+−=
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K

kJ/s
5.05.05.0

K 1000

kJ/s 500

K 700

kJ/s 350

K 500

kJ/s 250

σ

σ

&

&

Since σ is negative, the claim is not in accord with the 
second law of thermodynamics and is therefore denied.

·



Entropy Rate Balance for Control Volumes

►Like mass and energy, entropy can be transferred into or 
out of a control volume by streams of matter.

►Since this is the principal difference between the closed 
system and control volume entropy rate balances, the 
control volume form can be obtained by modifying the 
closed system form to account for such entropy transfer.  closed system form to account for such entropy transfer.  
The result is

(Eq. 6.34)

where iism& eesm&and account, respectively, for rates of entropy
transfer accompanying mass flow at inlets i and exits e.



Entropy Rate Balance for Control Volumes

►For control volumes at steady state, Eq. 6.34reduces to 
give

(Eq. 6.36)

►For a one-inlet, one-exit control volume at steady state, ►For a one-inlet, one-exit control volume at steady state, 
Eq. 6.36reduces to give

(Eq. 6.37)

where 1 and 2 denote the inlet and exit, respectively, and
is the common mass flow rate at these locations.

m&



Example: Water vapor enters a valve at 0.7 
bar, 280oC and exits at 0.35 bar. (a) If the 
water vapor undergoes a throttling process, 
determine the rate of entropy production 
within the valve, in kJ/K per kg of water 
vapor flowing. (b) What is the source of 

Entropy Rate Balance for Control Volumes

p1 = 0.7 bar p2 = 0.35 barp1 = 0.7 bar p2 = 0.35 bar

( ) cv210 σ&&

&

+−+=∑ ssm
T

Q

j j

j

vapor flowing. (b) What is the source of 
entropy production in this case?

( ) cv210 σ&& +−= ssm

p1 = 0.7 bar
T1 = 280oC

p2 = 0.35 bar
h2 = h1

p1 = 0.7 bar
T1 = 280oC

p2 = 0.35 bar
h2 = h1

0

→

(a) For a throttling process, there is no significant 
heat transfer.  Thus, Eq. 6.37reduces to



Entropy Rate Balance for Control Volumes

From Table A-4, h1 = 3035.0 kJ/kg, s1 = 8.3162 kJ/kg·K .

Solving

For a throttling process, h2 = h1 (Eq. 4.22).  Interpolating 
in Table A-4 at 0.35 barand h2 = 3035.0 kJ/kg, 

12
cv ss
m

−=
&

&σ

in Table A-4 at 0.35 barand h2 = 3035.0 kJ/kg, 
s2 = 8.6295 kJ/kg·K .

=
m&

&cvσ
Finally (8.6295 – 8.3162) kJ/kg·K = 0.3133 kJ/kg·K

(b) Selecting from the list of irreversibilities provided in 
Sec. 5.3.1, the source of the entropy production here is 
the unrestrained expansion to a lower pressure undergone 
by the water vapor.



Comment: The value of the entropy production for a single 
component such as the throttling valve considered here often 
does not have much significance by itself.  The significance of 
the entropy production of any component is normally 
determined through comparison with the entropy production 
values of other components combined with that component to 

Entropy Rate Balance for Control Volumes

values of other components combined with that component to 
form an integrated system.  Reducing irreversibilities of 
components with the highest entropy production rates may 
lead to improved thermodynamic performance of the 
integrated system.



Calculating Entropy Change

►The property data provided in Tables A-2
through A-18, similar compilations for other 
substances, and numerous important relations 
among such properties are established using the 
TdS equations.  When expressed on a unit mass TdS equations.  When expressed on a unit mass 
basis, these equations are

(Eq. 6.10a)

(Eq. 6.10b)



Calculating Entropy Change
►As an application, consider a 

change in phase from saturated 
liquid to saturated vapor at 
constant pressure.

►Since pressure is constant, Eq. 
6.10breduces to give

T

dh
ds =

6.10breduces to give

►Then, because temperature is also constant during the 
phase change

(Eq. 6.12)

This relationship is applied in property tables for 
tabulating (sg – sf) from known values of (hg – hf).



Calculating Entropy Change
►For example, consider water vapor at 100oC
(373.15 K). From Table A-2, (hg – hf) = 2257.1 kJ/kg.  

(sg – sf) = (2257.1 kJ/kg)/373.15 K = 6.049 kJ/kg·K

Thus

►Next, the TdS equations are applied to two 
additional cases:  substances modeled as 
incompressible and gases modeled as ideal 
gases.

which agrees with the value from Table A-2, as 
expected.



Calculating Entropy Change of an 
Incompressible Substance

►The incompressible substance model assumes the specific 
volume is constant and specific internal energy depends 
solely on temperature:  u = u(T).  Thus, du = c(T)dT, where 
c denotes specific heat.

►With these relations, Eq. 6.10areduces to give

►When the specific heat is constant

►On integration, the change in specific entropy is

(Eq. 6.13)



Calculating Entropy Change of an Ideal Gas

►The ideal gas model assumes pressure, specific volume 
and temperature are related by pv = RT.  Also, specific 
internal energy and specific enthalpy each depend solely 
on temperature:  u = u(T), h = h(T), giving du = c

v
dT and 

dh = cpdT, respectively.

►Using these relations and integrating, the TdS equations►Using these relations and integrating, the TdS equations
give, respectively

(Eq. 6.17) (Eq. 6.18)



►Since c
v

and cp are functions of temperature for ideal gases, 
such functional relations are required to perform the 
integration of the first term on the right of Eqs. 6.17and 6.18. 

Calculating Entropy Change of an Ideal Gas
►Since these particular equations give entropy change on a 

unit of mass basis, the constant R is determined from 
./ MRR =

►For several gases modeled as ideal gases, including air, ►For several gases modeled as ideal gases, including air, 
CO2, CO, O2, N2, and water vapor, the evaluation of 
entropy change can be reduced to a convenient tabular 
approach using the variable so defined by 

(Eq. 6.19)

where T ' is an arbitrary reference temperature.



►Accordingly, Eq. 6.18becomes 

Calculating Entropy Change of an Ideal Gas
►Using so, the integral term of Eq. 6.18can be expressed as 

(Eq. 6.20a)(Eq. 6.20a)

or on a per mole basis as

(Eq. 6.20b)

►For air, Table A-22 provides so in units of kJ/kg·K.  For the 
other gases mentioned, Table A-23 provides in units of 
kJ/kmol·K.

os



Calculating Entropy Change of an Ideal Gas

►From Table A-22, we get so
1 = 1.70203and so

2 = 3.37901, 
each in kJ/kg·K.  Substituting into Eq. 6.20a

Example: Determine the change in specific entropy, in 
kJ/kg·K, of air as an ideal gas undergoing a process from 
T1 = 300 K, p1 = 1 bar to T2 = 1420 K, p2 = 5 bar.

kJ
215.1

bar 5
ln

kJ314.8kJ
)70203.137901.3(12 =
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Ideal Gas Properties of Air 

T(K), h and u(kJ/kg), so (kJ/kg·K) 
    when ∆s = 0     when ∆s = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 

260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 

270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 

280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 

285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 

290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 

295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 

300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 

305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 

310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 
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Table A-22



Calculating Entropy Change of an Ideal Gas

►Table A-22 provides additional 
data for air modeled as an ideal 
gas.  These values, denoted by 
pr and vr, refer only to two 
states having the same specific states having the same specific 
entropy.  This case has 
important applications, and is 
shown in the figure. 



►When s2 = s1, the following equation relates T1, T2, p1, 
and p2

Calculating Entropy Change of an Ideal Gas

(Eq. 6.41)

where pr(T ) is read from Table A-22, as appropriate.

)(

)(

1r

2r

1

2

Tp

Tp

p

p
= (s1 = s2, air only)

Ideal Gas Properties of Air 

T(K), h and u(kJ/kg), so (kJ/kg·K) 
    when ∆s = 0     when ∆s = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 

260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 

270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 

280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 

285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 

290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 

295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 

300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 

305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 

310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 

 

Table A-22



Calculating Entropy Change of an Ideal Gas

►When s2 = s1, the following equation relates T1, T2, v1, 
and v2

(Eq. 6.42)

where vr(T ) is read from Table A-22, as appropriate.

)(

)(

1r

2r

1

2

T

T

v

v

v

v

= (s1 = s2, air only)

Ideal Gas Properties of Air 

T(K), h and u(kJ/kg), so (kJ/kg·K) 
    when ∆s = 0     when ∆s = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 

260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 

270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 

280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 

285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 

290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 

295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 

300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 

305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 

310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 

 

Table A-22



Entropy Change of an Ideal Gas 
Assuming Constant Specific Heats

►When the specific heats c
v

and cp are assumed constant, 
Eqs. 6.17and 6.18reduce, respectively, to 

(Eq. 6.17) (Eq. 6.18)

(Eq. 6.21) (Eq. 6.22)

►These expressions have many 
applications.  In particular, they can be 
applied to develop relations among T, 
p, and v at two states having the same 
specific entropy as shown in the figure. 



►Since s2 = s1, Eqs. 6.21and 
6.22become 

Entropy Change of an Ideal Gas
Assuming Constant Specific Heats

where k is the specific ratio
►With the ideal gas relations 

where k is the specific ratio

(Eq. 6.43)►These equations 
can be solved, 
respectively, to give (Eq. 6.44)

►Eliminating the 
temperature ratio gives

(Eq. 6.45)



Calculating Entropy Change of an Ideal Gas

( ) ( ) bar 4.1  p

Example: Air undergoes a process from T1 = 620 K, p1 = 12 bar
to a final state where s2 = s1, p2 = 1.4 bar.  Employing the ideal 
gas model, determine the final temperature T2, in K.  Solve using 
(a) pr data from Table A-22 and (b) a constant specific heat ratio 
k evaluated at 620 K from Table A-20:  k = 1.374.  Comment.

(a) With Eq. 6.41and pr(T1) = 18.36from Table A-22

Ideal Gas Properties of Air 

T(K), h and u(kJ/kg), so (kJ/kg·K) 
    when ∆s = 0     when ∆s = 0 

T h u so pr vr T h u so pr vr 
315 315.27 224.85 1.75106 1.6442 549.8 600 607.02 434.78 2.40902 16.28 105.8 

320 320.29 228.42 1.76690 1.7375 528.6 610 617.53 442.42 2.42644 17.30 101.2 

325 325.31 232.02 1.78249 1.8345 508.4 620 628.07 450.09 2.44356 18.36 96.92 

330 330.34 235.61 1.79783 1.9352 489.4 630 638.63 457.78 2.46048 19.84 92.84 

340 340.42 242.82 1.82790 2.149 454.1 640 649.22 465.50 2.47716 20.64 88.99 

350 350.49 250.02 1.85708 2.379 422.2 650 659.84 473.25 2.49364 21.86 85.34 

 

( ) ( ) 142.2
bar 12

bar 4.1
36.18

1

2
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TpTp

Table A-22

Interpolating in Table A-22, T2 = 339.7 K



Calculating Entropy Change of an Ideal Gas

( ) ( )374.1/374.0/1

1

2
12 bar 12

bar 4.1
K 620 







=







=

− kk

p

p
TT

(b) With Eq. 6.43

T2 = 345.5 K

Comment: The approach of (a) accounts for 
variation of specific heat with temperature but 
the approach of (b) does not.  With a k value 
more representative of the temperature interval, 
the value obtained in (b) using Eq. 6.43would be 
in better agreement with that obtained in (a) with 
Eq. 6.41.



Isentropic Turbine Efficiency

►For a turbine, the energy rate 
balance reduces to 1 2
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► If the change in kinetic energy of flowing matter is negligible, ► If the change in kinetic energy of flowing matter is negligible, 
½(V1

2 – V2
2) drops out.

► If the change in potential energy of flowing matter is 
negligible, g(z1 – z2) drops out.

► If the heat transfer with surroundings is negligible,       drops 
out.

21
cv hh

m

W
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the left side is work developed per unit of mass flowing.
where



Isentropic Turbine Efficiency

►For a turbine, the entropy rate 
balance reduces to 

1 2

► If the heat transfer with surroundings is negligible, 
drops out.
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Isentropic Turbine Efficiency

► Since the rate of entropy production 
cannot be negative, the only turbine exit 
states that can be attained in an adiabatic
expansion are those with s2 ≥ s1.  This is 
shown on the Mollier diagram to the right.

► The state labeled 2son the figure would be attained only in an ► The state labeled 2son the figure would be attained only in an 
isentropic expansion from the inlet state to the specified exit 
pressure – that is, 2swould be attained only in the absence of 
internal irreversibilities.  By inspection of the figure, the 
maximum theoretical value for the turbine work per unit of mass 
flowing is developed in such an internally reversible, adiabatic 
expansion:

s21
s

cv hh
m

W
−=











&

&



Isentropic Turbine Efficiency

►The isentropic turbine 
efficiency is the ratio of the 
actual turbine work to the 
maximum theoretical work, 
each per unit of mass flowing:each per unit of mass flowing:

(Eq. 6.46)



Isentropic Turbine Efficiency

Example: Water vapor enters a turbine 
at p1 = 5 bar, T1 = 320oC and exits at p2

= 1 bar.  The work developed is 
measured as 271 kJ per kgof water 
vapor flowing.  Applying Eq. 6.46, 
determine the isentropic turbine 

1 2

►From Table A-4, h1 = 3105.6 kJ/kg, s1 = 7.5308 kJ/kg.  
With s2s = s1, interpolation in Table A-4 at a pressure of 
1 bargives h2s = 2743.0 kJ/kg.  Substituting values into 
Eq. 6.46

determine the isentropic turbine 
efficiency.
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Isentropic Compressor and Pump Efficiencies

►For a compressor the energy rate 
balance reduces to 
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► If the change in kinetic energy of flowing matter is negligible, ► If the change in kinetic energy of flowing matter is negligible, 
½(V1

2 – V2
2) drops out.

► If the change in potential energy of flowing matter is 
negligible, g(z1 – z2) drops out.

► If the heat transfer with surroundings is negligible,       drops 
out.
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the left side is work input per unit of mass flowing.
where



Isentropic Compressor and Pump Efficiencies

►For a compressor the entropy 
rate balance reduces to 

1
2

► If the heat transfer with surroundings is negligible, 
drops out.
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Isentropic Compressor and Pump Efficiencies

► Since the rate of entropy production 
cannot be negative, the only 
compressor exit states that can be 
attained in an adiabatic compression
are those with s2 ≥ s1.  This is shown on 
the Mollier diagram to the right.

► The state labeled 2son the figure would be attained only in an 

1s2
s

cv hh
m

W
−=










−

&

&

► The state labeled 2son the figure would be attained only in an 
isentropic compression from the inlet state to the specified exit 
pressure – that is, state 2swould be attained only in the 
absence of internal irreversibilities.  By inspection of the figure, 
the minimum theoretical value for the compressor work input 
per unit of mass flowing is for such an internally reversible, 
adiabatic compression:



Isentropic Compressor and Pump Efficiencies

►The isentropic compressor 
efficiency is the ratio of the 
minimum theoretical work 
input to the actual work input, 
each per unit of mass flowing:each per unit of mass flowing:

(Eq. 6.48)

►An isentropic pump efficiency is defined similarly.



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes

►Consider a one-inlet, one-
exit control volume at 
steady state:

►Compressors, pumps, and 
other devices commonly 
encountered in engineering 

1 2

Q&

cvW&

m&1 2

Q&

cvW&

m&

encountered in engineering 
practice are included in this 
class of control volumes.

►The objective is to introduce expressions for the heat 
transfer rate           and work rate            in the absence of 
internal irreversibilities.  The resulting expressions have 
important applications.
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Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes

► In agreement with the discussion of energy transfer by 
heat to a closed system during an internally reversible 
process (Sec. 6.6.1), in the present application we have

where the subscript “int rev” signals that the expression applies 

(Eq. 6.49)

►As shown by the figure, when the states 
visited by a unit mass passing from inlet to 
exit without internal irreversibilities are 
described by a curve on a T-s diagram, the 
heat transfer per unit of mass flowing is 
represented by the area under the curve.

where the subscript “int rev” signals that the expression applies 
only in the absence of internal irreversibilities.



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes

►Neglecting kinetic and potential energy effects, an energy 
rate balance for the control volume reduces to
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►With Eq. 6.49, this becomes (1)

►Since internal irreversibilities are assumed absent, each unit 
of mass visits a sequence of equilibrium states as it passes 
from inlet to exit.  Entropy, enthalpy, and pressure changes 
are therefore related by the TdS equation, Eq. 6.10b:

►With Eq. 6.49, this becomes (1)



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes

► Integrating from inlet to exit:

►With this relation Eq. (1) becomes

(Eq. 6.51b)

► If the specific volume remains approximately constant, 
as in many applications with liquids, Eq. 6.51bbecomes

(Eq. 6.51c)

This is applied in the discussion of vapor power cycles 
in Chapter 8.



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes

►As shown by the figure, when the states visited 
by a unit mass passing from inlet to exit without 
internal irreversibilities are described by a curve 
on a p-v diagram, the magnitude of ∫vdp is 
shown by the area behind the curve.shown by the area behind the curve.



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes

Example: A compressor operates at 
steady state with natural gas entering at 
at p1, v1.  The gas undergoes a polytropic 
process described by pv = constant and 
exits at a higher pressure, p2.  

1
2

(a) Ignoring kinetic and potential energy effects, evaluate 
the work per unit of mass flowing.

(b) If internal irreversibilities were present, would the 
magnitude of the work per unit of mass flowing be less 
than, the same as, or greater than determined in part (a)?



Heat Transfer and Work in Internally Reversible 
Steady-State Flow Processes

(a) With pv = constant, Eq. 6.51bgives

(b) Left for class discussion.

The minus sign indicates that the compressor 
requires a work input.


