Chapter 3

Evaluating Properties

Learning Outcomes

- Demonstrate understanding of key concepts . . . including phase and pure substance, state principle for simple compressible systems, $p-v-T$ surface, saturation temperature and saturation pressure, two-phase liquid-vapor mixture, quality, enthalpy, and specific heats.
- Apply the closed system energy balance with property data.

Learning Outcomes, cont.

- Sketch $T-v, p-v$, and phase diagrams, and locate states on these diagrams.
- Retrieve property data from Tables A-1 through A-23.
- Apply the ideal gas model for thermodynamic analysis, including determining when use of the model is warranted.

Phase

- A quantity of matter that is homogeneous throughout in both chemical composition and physical structure.
- Homogeneity in physical structure means that the matter is all solid, or all liquid, or all vapor (gas).
- Examples:
- The air we breathe is a gas phase consisting of a mixture of different gases.
- Drinking water with ice cubes contains two phases of water: liquid and solid.
- Vinegar and olive oil salad dressing contains two different liquid phases.

Pure Substance

- A substance that is uniform and invariable in chemical composition.
- A pure substance can exist in more than one phase, but its chemical composition must be the same in each phase.
- Examples:
- Drinking water with ice cubes can be regarded as a pure substance because each phase has the same composition.
- A fuel-air mixture in the cylinder of an automobile engine can be regarded as a pure substance until ignition occurs.

State Principle for Simple Compressible Systems

- Systems of commonly encountered pure substances are called simple compressible systems. These substances include those in appendix tables A-2 through A-18, A-22, and A-23.
- The intensive state of a simple compressible system at equilibrium is described by its intensive properties, including temperature, pressure, specific volume, density, specific internal energy, and specific enthalpy.
- Properties such as velocity and elevation are excluded because their values depend on arbitrary datum choices, such as zero values at the surface of the earth. For the state principle, these properties are not relevant.

State Principle for Simple Compressible Systems

- Not all of the relevant intensive properties are independent.
-Some are related by definitions - for example, density is $1 / v$ and specific enthalpy is $u+p v$
(Eq. 3.4).
- Others are related through expressions developed from experimental data.
- Some intensive properties may be independent in a single phase, but become dependent when there is more than one phase present.

State Principle for Simple Compressible Systems

- For a simple compressible system, values for any two independent intensive properties determine the values of all other intensive properties. This is the state principle for simple compressible systems.
- Among alternative sets of two independent intensive properties, (T, v) and (p, v) are frequently convenient. We soon show that temperature and pressure are not always an independent set.

$p-v-T$ Surface

- For pure, simple compressible systems, pressure can be determined as a function of temperature and specific volume:

$$
p=p(T, v)
$$

The graph of this relation for water is indicated by the $p-v-T$ surface shown.

- Single-phase regions on the surface include solid, liquid, and vapor.
- Two-phase regions are located between single-phase regions, where two phases exist in equilibrium: liquidvapor, solid-vapor, solid-liquid.

p-v-T Surface

- The dome-shaped region composed of the two-phase liquid-vapor states is called the vapor dome.
- A state at which a phase change begins or ends is called a saturation state. Lines bordering the vapor dome are called the saturated liquid and saturated vapor lines.
- At the top of the dome, where saturated liquid and saturated vapor lines meet, is the critical point.
- Critical temperature $\left(T_{c}\right)$ is the maximum temperature at which liquid and vapor phases can coexist in equilibrium.
-Critical pressure $\left(\boldsymbol{p}_{c}\right)$ is pressure at the critical point.

Projections of the p-v-T Surface

- Projection of the $p-v-T$ surface onto the pressure-temperature plane is a phase diagram.
- Saturation temperature designates the temperature at which a phase change takes place at a given pressure.
- Saturation pressure designates the pressure at which a phase change takes

Temperature place at a given temperature.
-Within two-phase regions pressure and temperature are not independent.

Projections of the $p-v-T$ Surface

- Projection of the $p-v-T$ surface onto the pressure-specific volume plane results in a p-v diagram.

Specific volume

- Projection of the $p-v-T$ surface onto the temperature-specific volume plane results in a T-v diagram.

Phase Change

- Consider a closed system consisting of a unit mass of liquid water at $20^{\circ} \mathrm{C}$ contained within a pistoncylinder assembly.
- This state is represented by 1 (highlighted by the blue dot).
- Liquid states such as this, where temperature is lower than the saturation temperature corresponding to the pressure at the state, are called compressed liquid states.

Saturated Liquid

- As the system is heated at constant pressure, the temperature increases considerably while the specific volume increases slightly.
- Eventually, the system is brought to the state represented by f (highlighted by the blue dot).
- This is the saturated liquid state corresponding to the specified pressure.

Specific volume

Two-Phase Liquid-Vapor Mixture

- When the system is at the saturated liquid state, additional heat transfer at fixed pressure results in the formation of vapor without change in temperature but with a considerable increase in specific volume as shown by movement of the blue dot.
- With additional heating at fixed pressure, more vapor is formed and specific volume increases further as shown by additional movement of the blue dot.
- At these states, the system now consists of a two-phase liquid-vapor mixture.

Specific volume

Two-Phase Liquid-Vapor Mixture

- When a mixture of liquid and vapor exists in equilibrium, the liquid phase is a saturated liquid and the vapor phase is a saturated vapor.
- For a two-phase liquid-vapor mixture, the ratio of the mass of vapor present to the total mass of the mixture is its quality, x.
- The value of quality ranges from 0 to 1.
- At saturated liquid states, $x=0$.

Saturated Vapor

- If the system is heated further until the last bit of liquid has vaporized it is brought to the saturated vapor state.
- This state is represented by g (highlighted by the blue dot).
- At saturated vapor states, $x=1$.

Superheated Vapor

- When the system is at the saturated vapor state, further heating at fixed pressure results in increases in both temperature and specific volume.
- This state is represented by s (highlighted by the blue dot).
- Vapor states such as this, where temperature is higher than the saturation temperature corresponding to the pressure at the state, are called superheated vapor states.

Steam Tables

- Tables of properties for different substances are frequently set up in the same general format. The tables for water, called the steam tables, provide an example of this format. The steam tables are in appendix tables A-2 through A-5.
- Table A-4 applies to water as a superheated vapor.
- Table A-5 applies to compressed liquid water.
- Tables A-2 and A-3 apply to the two-phase, liquid-vapor mixture of water.

Single-Phase Regions

- Since pressure and temperature are independent properties in the single-phase liquid and vapor regions, they can be used to fix the state in these regions.
- Tables A-4 (Superheated Water Vapor) and A-5 (Compressed Liquid Water) provide several properties as functions of pressure and temperature, as
 considered next.

Single-Phase Regions

Properties tabulated in Tables A-4 and A-5 include

- Temperature (\boldsymbol{T})
- Pressure (\boldsymbol{p})
- Specific volume (v)
- Specific internal energy (u)
- Specific enthalpy (\boldsymbol{h}), which is a sum of terms that often appears in thermodynamic analysis:

$$
h=u+p v
$$

Enthalpy is a property because it is defined in terms of properties; physical significance is associated with it in Chapter 4.

- Specific entropy (s), an intensive property developed in Chapter 6

Single-Phase Regions

- Example: Properties associated with superheated water vapor at 10 MPa and $400^{\circ} \mathrm{C}$ are found in Table A-4.
$\nabla v=0.02641 \mathrm{~m}^{3} / \mathrm{kg}$
- $u=2832.4 \mathrm{~kJ} / \mathrm{kg}$
-h $=3096.5 \mathrm{~kJ} / \mathrm{kg}$
$s=6.2120 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$

Table A-4

$\begin{gathered} T \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\stackrel{v}{\mathrm{~m}^{3} / \mathrm{kg}}$	$\stackrel{u}{\mathrm{~kJ} / \mathrm{kg}}$	$\stackrel{h}{\mathrm{~kJ} / \mathrm{kg}}$	$\stackrel{s}{\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}}$	$\stackrel{v}{\mathrm{~m}^{3} / \mathrm{kg}}$	$\begin{gathered} u \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\stackrel{h}{\mathrm{~kJ} / \mathrm{kg}}$	$\stackrel{s}{\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}}$
	$\begin{gathered} p=80 \mathrm{bar}=8.0 \mathrm{MPa} \\ \left(T \text { sat }=295.06^{\circ} \mathrm{C}\right) \end{gathered}$				$p=$	$\left\{\begin{array}{l} 100 \text { bar } \\ (T \text { sat }=3 \end{array}\right.$	$\begin{aligned} & =10.0 \mathrm{~N} \\ & \left.1.06^{\circ} \mathrm{C}\right) \end{aligned}$	Pa
Sat.	0.02352	2569.8	2758.0	5.7432	0.01803	2544.4	2724.7	5.6141
320	0.02682	2662.7	2877.2	5.9489	0.01925	2588.8	2781.3	5.7103
360	0.03089	2772.7	3019.8	6.1819	0.02331	2729.1	2962.1	6.0060
400	0.03432	2863.8	3138.3	6.3634	0.02641ه2832.4 3096.5×6.2120			
440	0.03742	2946.7	3246.1	6.5190	0.02911	2922.1	3213.2	6.3805
480	0.04034	3025.7	3348.4	6.6586	0.03160	3005.4	3321.4	6.5282

Linear Interpolation

- When a state does not fall exactly on the grid of values provided by property tables, linear interpolation between adjacent entries is used.
- Example: Specific volume (v) associated with superheated water vapor at 10 bar and $215^{\circ} \mathrm{C}$ is found by linear interpolation between adjacent entries in Table A-4.

$$
\text { slope }=\frac{(0.2275-0.2060) \mathrm{m}^{3} / \mathrm{kg}}{(240-200)^{\circ} \mathrm{C}}=\frac{(v-0.2060) \mathrm{m}^{3} / \mathrm{kg}}{(215-200)^{\circ} \mathrm{C}} \rightarrow v=0.2141 \mathrm{~m}^{3} / \mathrm{kg}
$$

Two-Phase Liquid-Vapor Region

- Tables A-2/ (Temperature Table) and A-3 (Pressure Table) provide
- saturated liquid (f) data
- saturated vapor (g) data

Table note: For saturated liquid specific volume, the table heading is $v_{\mathrm{f}} \times \mathbf{1 0}^{\mathbf{3}}$. At $\mathbf{8}^{\circ} \mathrm{C}, v_{\mathrm{f}} \times \mathbf{1 0}^{\mathbf{3}}=\mathbf{1 . 0 0 2} \rightarrow v_{\mathrm{f}}=1.002 / \mathbf{1 0}^{\mathbf{3}}=1.002 \times \mathbf{1 0}^{-3}$.

Table A-2		Specific Volume$\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy $\mathrm{kJ} / \mathrm{kg}$		Enthalpy kJ/kg			Entropy kJ/kg•K		$\begin{aligned} & \text { Temp } \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \mathrm{C} \end{gathered}$	Press. bar	Sat. Liquid $\mathrm{v}_{\mathrm{f}} \times 10^{3}$	Sat. Vapor v_{g}	Sat. Liquid u_{f}	Sat. Vapor u_{g}	Sat. Liquid h_{f}	Evap. h_{fg}	Sat. Vapor h_{g}	Sat. Liquid S_{f}	$\begin{gathered} \hline \text { Sat. } \\ \text { Vapor } \end{gathered}$ s_{g}	
. 01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	. 01
4	0.00813	1.0001	157.232	16.77	2380.9	16.78	2491.9	2508.7	0.0610	9.0514	4
5	0.00872	1.0001	147.120	20.97	2382.3	20.98	2489.6	2510.6	0.0761	9.0257	5
6	0.00935	1.0001	137.734	25.19	2383.6	25.20	2487.2	2512.4	0.0912	9.0003	6
8	0.01072	1.0002	120.917	33.59	2386.4	33.60	2482.5	2516.1	0.1212	8.9501	8

Two-Phase Liquid-Vapor Region

- The specific volume of a two-phase liquidvapor mixture can be determined by using the saturation tables and quality, x.
- The total volume of the mixture is the sum of the volumes of the liquid and vapor
 phases:

$$
V=V_{\text {liq }}+V_{\text {vap }}
$$

- Dividing by the total mass of the mixture, \boldsymbol{m}, an average specific volume for the mixture is:

$$
v=\frac{V}{m}=\frac{V_{\mathrm{liq}}}{m}+\frac{V_{\mathrm{vap}}}{m}
$$

- With $V_{\text {liq }}=m_{\text {liq }} v_{\mathrm{f}}, V_{\text {vap }}=\boldsymbol{m}_{\text {vap }} v_{\mathrm{g}}, \boldsymbol{m}_{\text {vap }} / \boldsymbol{m}=\boldsymbol{x}$, and $\boldsymbol{m}_{\text {liq }} / \boldsymbol{m}=\mathbf{1}-\boldsymbol{x}$:

$$
v=(1-x) v_{f}+x v_{g}=v_{f}+x\left(v_{g}-v_{f}\right)
$$

Two-Phase Liquid-Vapor Region

- Since pressure and temperature are NOT independent properties in the two-phase liquidvapor region, they cannot be used to fix the state in this region.
- The property, quality (x), defined only in the twophase liquid-vapor region, and either temperature or pressure can be used to fix the state in this region.

$$
\begin{aligned}
& v=(1-x) v_{\mathrm{f}}+x v_{\mathrm{g}}=v_{\mathrm{f}}+x\left(v_{\mathrm{g}}-v_{\mathrm{f}}\right) \quad \text { (Eq. 3.2) } \\
& u=(1-x) u_{\mathrm{f}}+x u_{\mathrm{g}}=u_{\mathrm{f}}+\boldsymbol{x}\left(\boldsymbol{u}_{\mathrm{g}}-\boldsymbol{u}_{\mathrm{f}}\right) \quad \text { (Eq. 3.6) } \\
& h=(1-x) h_{\mathrm{f}}+x h_{\mathrm{g}}=h_{\mathrm{f}}+x\left(h_{\mathrm{g}}-h_{\mathrm{f}}\right) \quad(\text { Eq. 3.7 })
\end{aligned}
$$

Two-Phase Liquid-Vapor Region

- Example: A system consists of a two-phase liquid-vapor mixture of water at $6^{\circ} \mathrm{C}$ and a quality of 0.4 . Determine the specific volume, in $\mathrm{m}^{3} / \mathrm{kg}$, of the mixture.
- Solution: Apply Eq. 3.2, $v=v_{\mathrm{f}}+\boldsymbol{x}\left(\boldsymbol{v}_{\mathrm{g}}-v_{\mathrm{f}}\right)$

Substituting values from Table 2: $v_{\mathrm{f}}=1.001 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$ and $v_{\mathrm{g}}=137.734 \mathrm{~m}^{3} / \mathrm{kg}$:

$$
\begin{gathered}
v=1.001 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}+0.4\left(137.734-1.001 \times 10^{-3}\right) \mathrm{m}^{3} / \mathrm{kg} \\
v=\mathbf{5 5 . 0 9 4} \mathbf{~ m}^{3} / \mathbf{k g}
\end{gathered}
$$

Table A-2		Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg•K		Temp ${ }^{\circ} \mathrm{C}$
Temp ${ }^{\circ} \mathrm{C}$	Press. bar	Sat. Liquid $v_{f} \times 10^{3}$	Sat. Vapor v_{g}	Sat. Liquid $\boldsymbol{U}_{\mathrm{f}}$	Sat. Vapor u_{g}	Sat. Liquid h_{f}	Evap. $\boldsymbol{h}_{\mathrm{fg}}$	Sat. Vapor h_{g}	Sat. Liquid S_{f}	Sat. Vapor S_{g}	
. 01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	. 01
4	0.00813	1.0001	157.232	16.77	2380.9	16.78	2491.9	2508.7	0.0610	9.0514	4
5	0.00872	1.0001	147.120	20.97	2382.3	20.98	2489.6	2510.6	0.0761	9.0257	5
6	0.00935	1.0001	137.734	25.19	2383.6	25.20	2487.2	2512.4	0.0912	9.0003	6
8	0.01072	1.0002	$120.91 /$	33.59	2386.4	33.60	2482.5	2516.1	0.1212	8.9501	8

Property Data Use in the Closed System Energy Balance

Example: A piston-cylinder assembly contains 2 kg of water at $100^{\circ} \mathrm{C}$ and 1 bar. The water is compressed to a saturated vapor state where the pressure is 2.5 bar. During compression, there is a heat transfer of energy from the water to its surroundings having a magnitude of 250 kJ . Neglecting changes in kinetic energy and potential energy, determine the work, in kJ , for the process of the water.

Property Data Use in the Closed System Energy Balance

Solution: An energy balance for the closed system is

$$
\Delta \mathbf{K}_{\mathbf{E}}^{\mathbf{0}}+\Delta \mathbf{P} \widehat{\mathbf{E}}^{\mathbf{0}}+\Delta \boldsymbol{U}=\boldsymbol{Q}-\boldsymbol{W}
$$

where the kinetic and potential energy changes are neglected.

Thus

$$
W=Q-m\left(u_{2}-u_{1}\right)
$$

State 1 is in the superheated vapor region and is fixed by $p_{1}=1 \mathrm{bar}$ and $\boldsymbol{T}_{1}=100^{\circ} \mathrm{C}$. From Table A-4, $u_{1}=2506.7 \mathrm{~kJ} / \mathrm{kg}$.

State $\mathbf{2}$ is saturated vapor at $\boldsymbol{p}_{\mathbf{2}}=\mathbf{2 . 5}$ bar. From Table A-3, $u_{2}=u_{\mathrm{g}}=2537.2 \mathrm{~kJ} / \mathrm{kg}$.

$$
W=-250 \mathrm{~kJ}-(2 \mathrm{~kg})(2537.2-2506.7) \mathrm{kJ} / \mathrm{kg}=-311 \mathrm{~kJ}
$$

The negative sign indicates work is done on the system as expected for a compression process.

Specific Heats

- Three properties related to specific internal energy and specific enthalpy having important applications are the specific heats \boldsymbol{c}_{v} and c_{p} and the specific heat ratio k.

$$
c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

(Eq. 3.8)

$$
c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

(Eq. 3.9)

$$
k=\frac{c_{p}}{c_{v}}
$$

(Eq. 3.10)
$>$ In general, c_{v} is a function of v and $T(\operatorname{or} p$ and $T)$, and c_{p} depends on both p and T (or v and T).

- Specific heat data are provided in Fig 3.9 and Tables A-19 through A-21.
- Although c_{v} and c_{p} are referred to as specific heats, there is no general relationship between them and the heat transfer term of the energy balance denoted by \boldsymbol{Q}.

Property Approximations for Liquids

- Approximate values for $\boldsymbol{v}, \boldsymbol{u}$, and \boldsymbol{h} at liquid states can be obtained using saturated liquid data.
- Since the values of v and u for liquids change very little with pressure at a fixed temperature, Eqs. 3.11 and 3.12 can be used to approximate their values.

$$
\begin{array}{ll}
v(T, p) \approx v_{\mathrm{f}}(T) & \text { (Eq. 3.11) } \\
u(T, p) \approx u_{\mathrm{f}}(T) & \text { (Eq. 3.12) }
\end{array}
$$

- An approximate value for \boldsymbol{h} at liquid states can be obtained using Eqs. 3.11 and 3.12 in the definition $h=u+p v: h(T, p) \approx u_{\mathrm{f}}(T)+p v_{\mathrm{f}}(T)$ or alternatively

$$
h(T, p) \approx h_{\mathrm{f}}(T)+\underline{v_{\mathrm{f}}(T)\left[p-p_{\mathrm{sat}}(T)\right]} \quad \text { (Eq. 3.13) }
$$

where $p_{\text {sat }}$ denotes the saturation pressure at the given temperature

- When the underlined term in Eq. 3.13 is small

$$
\begin{equation*}
h(T, p) \approx h_{\mathrm{f}}(T) \tag{Eq.3.14}
\end{equation*}
$$

Incompressible Substance Model

- For a substance modeled as incompressible
$-v=$ constant
- $u=u(T)$
- For a substance modeled as incompressible, $c_{p}=c_{v}$; the common specific heat value is represented by c.
\rightarrow For a substance modeled as incompressible with constant c :

$$
\begin{align*}
& u_{2}-u_{1}=c\left(T_{2}-T_{1}\right) \tag{Eq.3.20a}\\
& h_{2}-h_{1}=c\left(T_{2}-T_{1}\right)+v\left(p_{2}-p_{1}\right) \tag{Eq.3.20b}
\end{align*}
$$

- In Eq. 3.20b, the contribution of the underlined term is often small enough to be ignored.

Generalized Compressibility Chart

- The $p-\bar{v}-T$ relation for 10 common gases is shown in the generalized compressibility chart.

Generalized Compressibility Chart

- In this chart, the compressibility factor, Z, is plotted versus the reduced pressure, p_{R}, and reduced temperature T_{R}, where

$$
Z=\frac{p \bar{v}}{\bar{R} T}
$$

(Eq. 3.23)

$$
p_{\mathrm{R}}=p / p_{\mathrm{c}}
$$

(Eq. 3.27)

$$
T_{\mathrm{R}}=T / T_{\mathrm{c}}
$$

(Eq. 3.28)
\bar{R} is the universal gas constant

$$
\bar{R}=\left\{\begin{array}{l}
8.314 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K} \\
1.986 \mathrm{Btu} / \mathrm{lbmol} \cdot \mathrm{om}^{2} \\
1545 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbmol} \cdot \cdot \mathrm{R}
\end{array}\right.
$$

(Eq. 3.22)

The symbols p_{c} and T_{c} denote the temperature and pressure at the critical point for the particular gas under consideration. These values are obtained from Tables A-1.

Generalized Compressibility Chart

- When $p, p_{\mathrm{c}}, T, T_{\mathrm{c}}, \bar{v}$, and \bar{R} are used in consistent units, Z, p_{R}, and T_{R} are numerical values without units.
- Example: For air at $200 \mathrm{~K}, 132 \mathrm{bar}, \boldsymbol{T}_{\mathrm{R}}=200 \mathrm{~K} / 133 \mathrm{~K}=\mathbf{1 . 5}$, $p_{\mathrm{R}}=132 \mathrm{bar} / 37.7 \mathrm{bar}=3.5$ where T_{c} and p_{c} for air are from Table A-1. With these $T_{\mathrm{R}}, p_{\mathrm{R}}$ values, the generalized compressibility chart gives $Z=0.8$.
- With $\bar{v}=\mathrm{M} v$, an alternative form of the compressibility factor is

$$
\begin{equation*}
Z=\frac{p v}{R T} \tag{Eq.3.24}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\frac{\bar{R}}{M} \tag{Eq.3.25}
\end{equation*}
$$

Studying the Generalized Compressibility Chart

- The solid lines labeled with T_{R} values represent best fits to experimental data. For the 10 different gases represented there is little scatter in data about these lines.
- At the lowest reduced temperature value shown, $T_{\mathrm{R}}=1.0$, the compressibility factor varies between 0.2 and 1.0. Less variation is observed as T_{R} takes higher values.

Studying the Generalized Compressibility Chart

- For each specified value of T_{R}, the compressibility factor approaches a value of 1.0 as p_{R} approaches zero.

Studying the Generalized Compressibility Chart

- Low values of p_{R}, where $Z \approx 1$, do not necessarily correspond to a range of low absolute pressures.
- For instance, if $p_{\mathrm{R}}=0.05$, then $p=0.05 p_{\mathrm{c}}$. With p_{c} values from Table A-1

Water vapor	$p_{\mathrm{c}}=\mathbf{2 2 0 . 9} \mathrm{bar} \rightarrow p=11 \mathrm{bar}$
Ammonia	$p_{\mathrm{c}}=\mathbf{1 1 2 . 8} \mathrm{bar} \rightarrow p=\mathbf{5 . 6 \mathrm { bar }}$
Carbon dioxide	$p_{\mathrm{c}}=73.9 \mathrm{bar} \rightarrow p=3.7 \mathrm{bar}$
Air	$p_{\mathrm{c}}=37.7 \mathrm{bar} \rightarrow p=1.9 \mathrm{bar}$

- These pressure values range from 1.9 to 11 bar, which in engineering practice are not normally considered as low pressures.

Introducing the Ideal Gas Model

- To recap, the generalized compressibility chart shows that at states where the pressure p is small relative to the critical pressure p_{c} (where p_{R} is small), the compressibility factor Z is approximately 1.

- At such states, it can be assumed with reasonable accuracy that $\boldsymbol{Z}=\mathbf{1}$. Then

$$
\begin{equation*}
p v=R T \tag{Eq.3.32}
\end{equation*}
$$

Introducing the Ideal Gas Model

- Three alternative forms of Eq. 3.32 can be derived as follows:
$>$ With $v=V / m$, Eq. 3.32 gives

$$
\begin{equation*}
p V=m R T \tag{Eq.3.33}
\end{equation*}
$$

- With $v=\bar{v} / \boldsymbol{M}$ and $\boldsymbol{R}=\overline{\boldsymbol{R}} / \boldsymbol{M}$, Eq. 3.32 gives

$$
\begin{equation*}
p \bar{v}=\bar{R} T \tag{Eq.3.34}
\end{equation*}
$$

- Finally, with $\bar{v}=\boldsymbol{V} / \boldsymbol{n}$, Eq. 3.34 gives

$$
\begin{equation*}
p V=n \bar{R} T \tag{Eq.3.35}
\end{equation*}
$$

Introducing the Ideal Gas Model

- Investigation of gas behavior at states where Eqs. 3.323.35 are applicable indicates that the specific internal energy depends primarily on temperature. Accordingly, at such states, it can be assumed with reasonable accuracy that it depends on temperature alone:

$$
\begin{equation*}
u=u(T) \tag{Eq.3.36}
\end{equation*}
$$

- With Eqs. 3.32 and 3.36, the specific enthalpy also depends on temperature alone at such states:

$$
\begin{equation*}
h=u+p v=u(T)+R T \tag{Eq.3.37}
\end{equation*}
$$

- Collecting results, a gas modeled as an ideal gas adheres to Eqs. 3.32-3.35 and Eqs. 3.36 and 3.37.

Introducing the Ideal Gas Model

-While the ideal gas model does not provide an acceptable approximation generally, in the limiting case considered in the discussion of the compressibility chart, it is justified for use, and indeed commonly applied in engineering thermodynamics at such states.

- Appropriateness of the ideal gas model can be checked by locating states under consideration on one of the generalized compressibility charts provided by appendix figures Figs. A-1 through A-3.

Internal Energy and Enthalpy of Ideal Gases

-For a gas obeying the ideal gas model, specific internal energy depends only on temperature. Hence, the specific heat c_{v}, defined by Eq. 3.8, is also a function of temperature alone. That is,

$$
\begin{equation*}
c_{v}(T)=\frac{d u}{d T} \quad \text { (ideal gas) } \tag{Eq.3.38}
\end{equation*}
$$

- On integration,

$$
\begin{equation*}
u\left(T_{2}\right)-u\left(T_{1}\right)=\int_{T_{1}}^{T_{2}} c_{v}(T) d T \text { (ideal gas) } \tag{Eq.3.40}
\end{equation*}
$$

Internal Energy and Enthalpy of Ideal Gases

- Similarly, for a gas obeying the ideal gas model, specific enthalpy depends only on temperature. Hence, the specific heat c_{p}, defined by Eq. 3.9, is also a function of temperature alone. That is,

$$
\begin{equation*}
c_{p}(T)=\frac{d h}{d T} \quad \text { (ideal gas) } \tag{Eq.3.41}
\end{equation*}
$$

- On integration,

$$
\begin{equation*}
h\left(T_{2}\right)-h\left(T_{1}\right)=\int_{T_{1}}^{T_{2}} c_{p}(T) d T \text { (ideal gas) } \tag{Eq.3.43}
\end{equation*}
$$

Internal Energy and Enthalpy of Ideal Gases

- In applications where the specific heats are modeled as constant,

$$
\begin{align*}
& u\left(T_{2}\right)-u\left(T_{1}\right)=c_{v}\left[T_{2}-T_{1}\right] \tag{Eq.3.50}\\
& \left.h\left(T_{2}\right)-h\left(T_{1}\right)=c_{p} \mid T_{2}-T_{1}\right] \tag{Eq.3.51}
\end{align*}
$$

-For several common gases, evaluation of changes in specific internal energy and enthalpy is facilitated by use of the ideal gas tables:
Tables A-22 and A-23.

- Table A-22 applies to air modeled as an ideal gas.

Internal Energy and Enthalpy of Ideal Gases

- Example: Using Table A-22, determine the change in specific enthalpy, in $\mathrm{kJ} / \mathrm{kg}$, for a process of air from an initial state where $T_{1}=300 \mathrm{~K}, p_{1}=1$ bar to a final state where $T_{2}=1500 \mathrm{~K}, p_{2}=10 \mathrm{bar}$.
- Solution: $\boldsymbol{h}_{1}=300.19 \mathrm{~kJ} / \mathrm{kg} ; \boldsymbol{h}_{2}=1635.97 \mathrm{~kJ} / \mathrm{kg}$

$$
h_{2}-h_{1}=1335.78 \mathrm{~kJ} / \mathrm{kg}
$$

Over such a wide temperature interval, use of $h_{2}-h_{1}=c_{p}\left[T_{2}-T_{1}\right]$, Eq. 3.51, would not be appropriate.

TABLE A-22
Ideal Gas Properties of Air

$T(\mathrm{~K}), \mathrm{h}$ and $u(\mathrm{~kJ} / \mathrm{kg}), \mathrm{s}^{\circ}(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$											
T	h	u	s°	when $\Delta \mathrm{s}=0$		T	h	u	s°	when $\Delta \mathrm{s}=0$	
				p_{r}	v_{r}					p_{r}	v_{r}
250	250.05	178.28	1.51917	0.7329	979.	1400	1515.42	1113.52	3.36200	450.5	8.919
260	260.09	185.45	1.55848	0.8405	887.8	1420	1539.44	1131.77	3.37901	478.0	8.526
270	270.11	192.60	1.59634	0.9590	808.0	1440	1563.51	1150.13	3.39586	506.9	8.153
280	280.13	199.75	1.63279	1.0889	738.0	1460	1587.63	1168.49	3.41247	537.1	7.801
285	285.14	203.33	1.65055	1.1584	706.1	1480	161179	1186	3.42892	568.8	7468
290	290.16	206.91	1.66802	1.2311	676.1	1500	1635.97	1205.41	3.44516	601.9	7.152
295	295.17	210.49	1.68515	1.3068	647.9	1520	1660.23	1223.87	3.46120	636.5	6.854
300	300.19	214.07	1.70203	1.3860	621.2	1540	1684.51	1242.43	3.47712	672.8	6.569
305	305.22	217.67	1.71865	1.4686	596.0	1560	1708.82	1260.99	3.49276	710.5	6.301
310	310.24	221.25	1.73498	1.5546	572.3	1580	1733.17	1279.65	3.50829	750.0	6.046

Property Data Use in the Closed System Energy Balance

Example: A closed, rigid tank consists of 1 kg of air at 300 K . The air is heated until its temperature becomes 1500 K. Neglecting changes in kinetic energy and potential energy and modeling air as an ideal gas, determine the heat transfer, in kJ , during the process of the air.

Property Data Use in the Closed System Energy Balance

Solution: An energy balance for the closed system is

$$
\Delta K \mathbf{K E}^{0}+\Delta \nabla \boldsymbol{E}^{0}+\Delta U=\boldsymbol{Q}-\boldsymbol{H}^{\boldsymbol{U}^{0}}
$$

where the kinetic and potential energy changes are neglected and $W=0$ because there is no work mode.

Thus $Q=m\left(u_{2}-u_{1}\right)$

Substituting values for specific internal energy from Table A-22

TABLE A-22
Ideal Gas Properties of Air

$$
Q=(1 \mathrm{~kg})(1205.41-214.07) \mathrm{kJ} / \mathrm{kg}=991.34 \mathrm{~kJ}
$$

$T(\mathrm{~K})$, h and $u(\mathrm{~kJ} / \mathrm{kg}), \mathrm{s}^{\circ}(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$											
		when $\Delta \mathrm{s}=0$				T	h	и	s°	when $\Delta \mathrm{s}=0$	
T	h	u	s°	$p_{\text {r }}$	v_{r}					p_{r}	v_{r}
250	250.05	178.28	1.51917	0.7329	979.	1400	1515.42	1113.52	3.36200	450.5	8.919
260	260.09	185.45	1.55848	0.8405	887.8	1420	1539.44	1131.77	3.37901	478.0	8.526
270	270.11	192.60	1.59634	0.9590	808.0	1440	1563.51	1150.13	3.39586	506.9	8.153
280	280.13	199.75	1.63279	1.0889	738.0	1460	1587.63	1168.49	3.41247	537.1	7.801
285	285.14	203.33	1.65055	1.1584	706.1	1480	161179	118695	3.42892	568.8	7468
290	290.16	206.91	1.66802	1.2311	676.1	1500	1635.97	1205.41	3.44516	601.9	7.152
295	295.17	210.49	1.68515	1.3068	647.9	1520	1660.23	1223.87	3.46120	636.5	6.854
300	300.19	214.07	1.70203	1.3860	621.2	1540	1684.51	1242.43	3.47712	672.8	6.569
305	305.22	217.61	1.71865	1.4686	596.0	1560	1708.82	1260.99	3.49276	710.5	6.301
310	310.24	221.25	1.73498	1.5546	572.3	1580	1733.17	1279.65	3.50829	750.0	6.046

Polytropic Process

- A polytropic process is a quasiequilibrium process described by

$$
\begin{equation*}
p V^{n}=\text { constant } \tag{Eq.3.52}
\end{equation*}
$$

- The exponent, n, may take on any value from $-\infty$ to $+\infty$ depending on the particular process.
- For any gas (or liquid), when $\boldsymbol{n}=\mathbf{0}$, the process is a constant-pressure (isobaric) process.
- For any gas (or liquid), when $\boldsymbol{n}= \pm \infty$, the process is a constant-volume (isometric) process.
- For a gas modeled as an ideal gas, when $n=1$, the process is a constant-temperature (isothermal) process.

